7,790 research outputs found

    Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces

    Get PDF
    Molecular dynamics simulations are carried out to investigate the dynamic behavior of the slip length in thin polymer films confined between atomically smooth thermal surfaces. For weak wall-fluid interactions, the shear rate dependence of the slip length acquires a distinct local minimum followed by a rapid growth at higher shear rates. With increasing fluid density, the position of the local minimum is shifted to lower shear rates. We found that the ratio of the shear viscosity to the slip length, which defines the friction coefficient at the liquid/solid interface, undergoes a transition from a nearly constant value to the power law decay as a function of the slip velocity. In a wide range of shear rates and fluid densities, the friction coefficient is determined by the product of the value of surface induced peak in the structure factor and the contact density of the first fluid layer near the solid wall.Comment: 27 pages, 11 figure

    The supernova remnant CTB 37B and its associated magnetar CXOU J171405.7-381031: evidence for a magnetar-driven remnant

    Full text link
    We discuss in this Letter the association of the candidate magnetar CXOU J171405.7-381031 with the supernova remnant CTB 37B. The recent detection of the period derivative of the object allowed an estimation of a young characteristic age of only ∌1000yr\sim 1000 yr. This value is too small to be compatible even with the minimum radius of the remnant ≄10pc\geq 10 pc, the value corresponding to the {\it lower} limit of the estimated distance of 10.2±3.5kpc10.2 \pm 3.5 kpc, unless the true distance happens to be even smaller than the lower limit. We argue that a consistent scenario for the remnant origin, in which the latter is powered by the energy injected by a young magnetar, is indeed more accurate to explain the young age, and points out to its non-standard (i.e. magnetar-driven) nature.Comment: 6 pp., 1 figure, to appear in RAA Letter

    Molecular Dynamics Simulation of Compressible Fluid Flow in Two-Dimensional Channels

    Full text link
    We study compressible fluid flow in narrow two-dimensional channels using a novel molecular dynamics simulation method. In the simulation area, an upstream source is maintained at constant density and temperature while a downstream reservoir is kept at vacuum. The channel is sufficiently long in the direction of the flow that the finite length has little effect on the properties of the fluid in the central region. The simulated system is represented by an efficient data structure, whose internal elements are created and manipulated dynamically in a layered fashion. Consequently the code is highly efficient and manifests completely linear performance in simulations of large systems. We obtain the steady-state velocity, temperature, and density distributions in the system. The velocity distribution across the channel is very nearly a quadratic function of the distance from the center of the channel and reveals velocity slip at the boundaries; the temperature distribution is only approximately a quartic function of this distance from the center to the channel. The density distribution across the channel is non-uniform. We attribute this non-uniformity to the relatively high Mach number, approximately 0.5, in the fluid flow. An equation for the density distribution based on simple compressibility arguments is proposed; its predictions agree well with the simulation results. Validity of the concept of local dynamic temperature and the variation of the temperature along the channel are discussed.Comment: 16 pages (in latex) + 8 figures (in a single ps file). Submitted to the Physical Review

    Anomalous density dependence of static friction in sand

    Full text link
    We measured experimentally the static friction force FsF_s on the surface of a glass rod immersed in dry sand. We observed that FsF_s is extremely sensitive to the closeness of packing of grains. A linear increase of the grain-density yields to an exponentially increasing friction force. We also report on a novel periodicity of FsF_s during gradual pulling out of the rod. Our observations demonstrate the central role of grain bridges and arches in the macroscopic properties of granular packings.Comment: plain tex, 6 pages, to appear in Phys.Rev.

    Inter-species variation in colour perception

    Get PDF
    Inter-species variation in colour perception poses a serious problem for the view that colours are mind-independent properties. Given that colour perception varies so drastically across species, which species perceives colours as they really are? In this paper, I argue that all do. Specifically, I argue that members of different species perceive properties that are determinates of different, mutually compatible, determinables. This is an instance of a general selectionist strategy for dealing with cases of perceptual variation. According to selectionist views, objects simultaneously instantiate a plurality of colours, all of them genuinely mind-independent, and subjects select from amongst this plurality which colours they perceive. I contrast selectionist views with relationalist views that deny the mind-independence of colour, and consider some general objections to this strategy

    SCUBA and Spitzer observations of the Taurus molecular cloud - pulling the bull's tail

    Full text link
    We present continuum data from the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT), and the Mid-Infrared Photometer for Spitzer (MIPS) on the Spitzer Space Telescope, at submillimetre and infrared wavelengths respectively. We study the Taurus molecular cloud 1 (TMC1), and in particular the region of the Taurus Molecular Ring (TMR). In the continuum data we see no real evidence for a ring, but rather we see one side of it only, appearing as a filament. We name the filament `the bull's tail'. The filament is seen in emission at 850, 450 and 160um, and in absorption at 70um. We compare the data with archive data from the Infra-Red Astronomical Satellite (IRAS) at 12, 25, 60, 100um, in which the filament is also seen in absorption. We find that the emission from the filament consists of two components: a narrow, cold (~8K), central core; and a broader, slightly warmer (~12K), shoulder of emission. We use a radiative transfer code to model the filament's appearance, either in emission or absorption, simultaneously at each of the different wavelengths. Our best fit model uses a Plummer-like density profile and a homogeneous interstellar dust grain population. Unlike previous work on a similar, but different filament in Taurus, we require no grain coagulation to explain our data.Comment: 10 pages, 9 Figures, Accepted by MNRA

    Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations

    Get PDF
    We investigate the behavior of the slip length in Newtonian liquids subject to planar shear bounded by substrates with mixed boundary conditions. The upper wall, consisting of a homogenous surface of finite or vanishing slip, moves at a constant speed parallel to a lower stationary wall, whose surface is patterned with an array of stripes representing alternating regions of no-shear and finite or no-slip. Velocity fields and effective slip lengths are computed both from molecular dynamics (MD) simulations and solution of the Stokes equation for flow configurations either parallel or perpendicular to the stripes. Excellent agreement between the hydrodynamic and MD results is obtained when the normalized width of the slip regions, a/Ïƒâ‰łO(10)a/\sigma \gtrsim {\cal O}(10), where σ\sigma is the (fluid) molecular diameter characterizing the Lennard-Jones interaction. In this regime, the effective slip length increases monotonically with a/σa/\sigma to a saturation value. For a/σâ‰ČO(10)a/\sigma \lesssim {\cal O}(10) and transverse flow configurations, the non-uniform interaction potential at the lower wall constitutes a rough surface whose molecular scale corrugations strongly reduce the effective slip length below the hydrodynamic results. The translational symmetry for longitudinal flow eliminates the influence of molecular scale roughness; however, the reduced molecular ordering above the wetting regions of finite slip for small values of a/σa/\sigma increases the value of the effective slip length far above the hydrodynamic predictions. The strong inverse correlation between the effective slip length and the liquid structure factor representative of the first fluid layer near the patterned wall illustrates the influence of molecular ordering effects on slip in non-inertial flows.Comment: 12 pages, 10 figures Web reference added for animations: http://www.egr.msu.edu/~priezjev/bubble/bubble.htm

    The physical and psychological health benefits of positive emotional writing:Investigating the moderating role of Type D (distressed) personality

    Get PDF
    Objectives Type D personality is associated with psychological and physical ill‐health. However, there has been limited investigation of the role of Type D personality in interventions designed to enhance well‐being. This study investigated associations between Type D personality and the efficacy of positive emotional writing for reducing stress, anxiety, and physical symptoms. Design A between‐subjects longitudinal design was employed. Method Participants (N = 71, Mage = 28.2, SDage = 12.4) completed self‐report measures of Type D personality, physical symptoms, perceived stress, and trait anxiety, before completing either (1) positive emotional writing or (2) a non‐emotive control writing task, for 20 min per day over three consecutive days. State anxiety was measured immediately before and after each writing session, and self‐report questionnaires were again administered 4 weeks post‐writing. Results Participants in the positive emotional writing condition showed significantly greater reductions in (1) state anxiety and (2) both trait anxiety and perceived stress over the 4‐week follow‐up period, compared to the control group. While these effects were not moderated by Type D personality, a decrease in trait anxiety was particularly evident in participants who reported both high levels of social inhibition and low negative affectivity. Linguistic analysis of the writing diaries showed that Type D personality was positively associated with swear word use, but not any other linguistic categories. Conclusion These findings support the efficacy of positive emotional writing for alleviating stress and anxiety, but not perceived physical symptoms. Swearing may be a coping strategy employed by high Type D individuals

    Boundary conditions at a fluid - solid interface

    Full text link
    We study the boundary conditions at a fluid-solid interface using molecular dynamics simulations covering a broad range of fluid-solid interactions and fluid densities, and both simple and chain-molecule fluids. The slip length is shown to be independent of the type of flow, but rather is related to the fluid organization near the solid, as governed by the fluid-solid molecular interactions.Comment: REVtex, to appear in Physical Review Letter
    • 

    corecore