14,540 research outputs found
Protection of Privileges and Immunities of United States Citizens Against Interference by Individuals
Construction and Software Design for a Microcomputer Controlled pH/Ion Titrator
The construction of an automated titration device is described. The major components include an Apple II+ Microcomputer and 8-bit parallel interface. Fisher Accumet, Model 520 Digital pH/lon Meter, Gilmont Micrometer Buret of 2.5 mL capacity, Sigma stepper motor, power supply and driver to operate the buret, and a constant temperature bath of ± 0.005 °C stability. The limitations of the system are 0.001 pH/0.1 mv for the pH/ion sensing system, and 0.125 μL per step for the buret. The system as described is designed to determine equilibrium constants for metal ion-amino acid complexes. By changing the software a variety of different pH and redox titration experiments may be performed. A computer program used to operate the stepper motor driven syringe buret and record the pH from a digital pH meter is described. The program uses both Apple BASIC and assembly language. This is a closed loop operation in which the data from the pH meter is used to control the amount of reagent delivered by the buret. The results are displayed graphically as the titration proceeds. The variance of the pH readings are calculated using an assembly language subroutine and the calculations are done with zero round-off error
Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser
We experimentally study the relaxation oscillations and amplitude stability
properties of an optical laser operating deep into the bad-cavity regime using
a laser-cooled Rb Raman laser. By combining measurements of the laser
light field with nondemolition measurements of the atomic populations, we infer
the response of the gain medium represented by a collective atomic Bloch
vector. The results are qualitatively explained with a simple model.
Measurements and theory are extended to include the effect of intermediate
repumping states on the closed-loop stability of the oscillator and the role of
cavity feedback on stabilizing or enhancing relaxation oscillations. This
experimental study of the stability of an optical laser operating deep into the
bad-cavity regime will guide future development of superradiant lasers with
ultranarrow linewidths.Comment: 9 pages, 6 figure
Application Program Interface for the Orion Aerodynamics Database
The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The input data files are in standard formatted ASCII, also for improved portability. The API contains its own implementation of multidimensional table reading and lookup routines. The same aerodynamics input file can be used without modification on all implementations. The turnaround time from aerodynamics model release to a working implementation is significantly reduce
From Filamentary Networks to Dense Cores in Molecular Clouds: Toward a New Paradigm for Star Formation
Recent studies of the nearest star-forming clouds of the Galaxy at
submillimeter wavelengths with the Herschel Space Observatory have provided us
with unprecedented images of the initial and boundary conditions of the star
formation process. The Herschel results emphasize the role of interstellar
filaments in the star formation process and connect remarkably well with nearly
a decade's worth of numerical simulations and theory that have consistently
shown that the ISM should be highly filamentary on all scales and star
formation is intimately related to self-gravitating filaments. In this review,
we trace how the apparent complexity of cloud structure and star formation is
governed by relatively simple universal processes - from filamentary clumps to
galactic scales. We emphasize two crucial and complementary aspects: (i) the
key observational results obtained with Herschel over the past three years,
along with relevant new results obtained from the ground on the kinematics of
interstellar structures, and (ii) the key existing theoretical models and the
many numerical simulations of interstellar cloud structure and star formation.
We then synthesize a comprehensive physical picture that arises from the
confrontation of these observations and simulations.Comment: 24 pages, 15 figures. Accepted for publication as a review chapter in
Protostars and Planets VI, University of Arizona Press (2014), eds. H.
Beuther, R. Klessen, C. Dullemond, Th. Hennin
Evidence-based implementation practices applied to the intensive treatment of eating disorders: Summary of research and illustration of principles using a case example
Implementation of evidence‐based practices (EBPs) in intensive treatment settings poses a major challenge in the field of psychology. This is particularly true for eating disorder (ED) treatment, where multidisciplinary care is provided to a severe and complex patient population; almost no data exist concerning best practices in these settings. We summarize the research on EBP implementation science organized by existing frameworks and illustrate how these practices may be applied using a case example. We describe the recent successful implementation of EBPs in a community‐based intensive ED treatment network, which recently adapted and implemented transdiagnostic, empirically supported treatment for emotional disorders across its system of residential and day‐hospital programs. The research summary, implementation frameworks, and case example may inform future efforts to implement evidence‐based practice in intensive treatment settings.Published versio
The effect of relationship status on communicating emotions through touch
Research into emotional communication to date has largely focused on facial and vocal expressions. In contrast, recent studies by Hertenstein, Keltner, App, Bulleit, and Jaskolka (2006) and Hertenstein, Holmes, McCullough, and Keltner (2009) exploring nonverbal communication of emotion discovered that people could identify anger, disgust, fear, gratitude, happiness, love, sadness and sympathy from the experience of being touched on either the arm or body by a stranger, without seeing the touch. The study showed that strangers were unable to communicate the self-focused emotions embarrassment, envy and pride, or the universal emotion surprise. Literature relating to touch indicates that the interpretation of a tactile experience is significantly influenced by the relationship between the touchers (Coan, Schaefer, & Davidson, 2006). The present study compared the ability of romantic couples and strangers to communicate emotions solely via touch. Results showed that both strangers and romantic couples were able to communicate universal and prosocial emotions, whereas only romantic couples were able to communicate the self-focused emotions envy and pride
The Digital Astronaut Project Bone Remodeling Model
Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur: (1) The most commonly used countermeasure against bone loss has been prescribed exercise, (2) However, current exercise countermeasures do not completely eliminate bone loss in long duration, 4 to 6 months, spaceflight, (3,4) leaving the astronaut susceptible to early onset osteoporosis and a greater risk of fracture later in their lives. The introduction of the Advanced Resistive Exercise Device, coupled with improved nutrition, has further minimized the 4 to 6 month bone loss. But further work is needed to implement optimal exercise prescriptions, and (5) In this light, NASA's Digital Astronaut Project (DAP) is working with NASA physiologists to implement well-validated computational models that can help understand the mechanisms of bone demineralization in microgravity, and enhance exercise countermeasure development
- …
