3,327 research outputs found

    Comparing cover crop research in farmer-led and researcher-led experiments in the Western Corn Belt

    Get PDF
    Cover crops can mitigate soil degradation and nutrient loss and can be used to achieve continuous living cover in cropping systems, although their adoption in the Western Corn Belt of the United States remains low. It is increasingly recognized that cover crop integration into corn (Zea mays L.)-based crop rotations is complex, requiring site and operation specific management. In this review, we compared on-farm, farmer-led field scale trials to researcher-led trials carried out in small plots on University of Nebraska-Lincoln experiment stations. Although there is a range of cover crop research conducted in the state, there is no synthesis of the scope and key results of such eorts. Common cover crop challenges and goals in the state are similar to those reported nationwide; challenges include adequate planting timing, associated costs, and weather, while a top goal of cover crop use is to improve soil health. Farmer-led trials most frequently compared a cover crop to a no-cover crop control, likely reflecting a desire to test a basic design determining site-specific performance. Both researcher-led and farmer-led trials included designs testing cash crop planting timing, while some portion of farmer-led trials tested cover crop seeding rates, which are directly related to reported cover crop challenges. Farmer-led trials were carried out on a greater variety of soils, including sandy soils, whereas sandy soils were absent from researcher-led trials. More than half of farmer- led experiments were conducted on fields with slopes of 6–17% while most researcher-led experiments were conducted on fields with slopes of \u3c1%. Mean cover crop biomass production was 600 kg/ha in farmer-led and 2,000 kg/ha in researcher-led trials. Crop yields were not significantly aected by cover crops in either farmer-led or researcher-led trials. Such comparisons demonstrate that in some instances, cover crop research is addressing challenges, and in some instances, it could be expanded. This synthesis expands our knowledge base in a way that can promote co-learning between dierent scales of experiments, and ultimately, reduce risks associated with cover crop management and further promote continuous living cover of agricultural landscapes

    A Training Framework and Follow-Up Observations for Multiculturally Inclusive Teaching: Is Believing That We are Emphasizing Diversity Enough?

    Get PDF
    The authors present a theoretically and empirically grounded training for multiculturally inclusive teaching for new instructors. After implementing this training, qualitative data were gathered from instructors to identify their experience of the training and concerns related to incorporating issues of diversity into their classrooms (Study 1). At the end of the semester immediately following the training, quantitative data were gathered from instructors and their students to examine the interaction between students’ and instructors’ perceived diversity emphasis (Study 2). When allowed to choose the extent to which they incorporated issues of diversity in their classes, the instructors differentially reported emphasizing diversity in class. In addition, results from multi-level linear modeling analyses demonstrated that instructors’ reported emphasis on diversity in the classroom did not predict students’ perceptions of the inclusion of issues of diversity. The authors discuss implications for the development of multiculturally supportive programs of learning at universities

    Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion

    Get PDF
    The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion

    Magnetars' Giant Flares: the case of SGR 1806-20

    Full text link
    We first review on the peculiar characteristics of the bursting and flaring activity of the Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars. We then report on the properties of the SGR 1806-20's Giant Flare occurred on 2004 December 27th, with particular interest on the pre and post flare intensity/hardness correlated variability. We show that these findings are consistent with the picture of a twisted internal magnetic field which stresses the star solid crust that finally cracks causing the giant flare (and the observed torsional oscillations). This crustal fracturing is accompanied by a simplification of the external magnetic field with a (partial) untwisting of the magnetosphere.Comment: 6 pages, 2 figures; accepted for publication in the Chinese Journal for Astronomy and Astrophysics (Vulcano conference - 2005

    Identification of tidal trapping of microplastics in a temperate salt marsh system using sea surface microlayer sampling

    Get PDF
    Microplastics are contaminants of increasing global environmental concern. Estuaries are a major transport pathway for land-derived plastics to the open ocean but are relatively understudied compared to coastal and open marine environments. The role of the “estuarine filter”, by which the supply of sediments and contaminants to the sea is moderated by processes including vegetative trapping and particle flocculation, remains poorly defined for microplastics land to sea transfer. Here, we focus on the sea surface microlayer (SML) as a vector for microplastics, and use SML sampling to assess microplastic trapping in a temperate marsh system in Southampton Water, UK. The SML is known to concentrate microplastics relative to the underlying water and is the first part of rising tidal waters to traverse intertidal and upper tidal surfaces. Sampling a salt marsh creek at high temporal resolution allowed assessment of microplastics in-wash and outflow from the salt marsh, and its relationship with tidal state and bulk suspended sediment concentrations (SSC), over spring and neap tides. A statistically significant decrease in microplastics abundance from the flood tide to the ebb tide was found, and a weak positive relationship with SSC observed

    Switching of magnetic domains reveals evidence for spatially inhomogeneous superconductivity

    Full text link
    The interplay of magnetic and charge fluctuations can lead to quantum phases with exceptional electronic properties. A case in point is magnetically-driven superconductivity, where magnetic correlations fundamentally affect the underlying symmetry and generate new physical properties. The superconducting wave-function in most known magnetic superconductors does not break translational symmetry. However, it has been predicted that modulated triplet p-wave superconductivity occurs in singlet d-wave superconductors with spin-density wave (SDW) order. Here we report evidence for the presence of a spatially inhomogeneous p-wave Cooper pair-density wave (PDW) in CeCoIn5. We show that the SDW domains can be switched completely by a tiny change of the magnetic field direction, which is naturally explained by the presence of triplet superconductivity. Further, the Q-phase emerges in a common magneto-superconducting quantum critical point. The Q-phase of CeCoIn5 thus represents an example where spatially modulated superconductivity is associated with SDW order

    Canonical Solution of Classical Magnetic Models with Long-Range Couplings

    Full text link
    We study the canonical solution of a family of classical n−vectorn-vector spin models on a generic dd-dimensional lattice; the couplings between two spins decay as the inverse of their distance raised to the power α\alpha, with α<d\alpha<d. The control of the thermodynamic limit requires the introduction of a rescaling factor in the potential energy, which makes the model extensive but not additive. A detailed analysis of the asymptotic spectral properties of the matrix of couplings was necessary to justify the saddle point method applied to the integration of functions depending on a diverging number of variables. The properties of a class of functions related to the modified Bessel functions had to be investigated. For given nn, and for any α\alpha, dd and lattice geometry, the solution is equivalent to that of the α=0\alpha=0 model, where the dimensionality dd and the geometry of the lattice are irrelevant.Comment: Submitted for publication in Journal of Statistical Physic

    Compressed magnetized shells of atomic gas and the formation of the Corona Australis molecular cloud

    Get PDF
    We present the identification of the previously unnoticed physical association between the Corona Australis molecular cloud (CrA), traced by interstellar dust emission, and two shell-like structures observed with line emission of atomic hydrogen (HI) at 21 cm. Although the existence of the two shells had already been reported in the literature, the physical link between the HI emission and CrA had never been highlighted until now. We used both Planck and Herschel data to trace dust emission and the Galactic All Sky HI Survey (GASS) to trace HI. The physical association between CrA and the shells is assessed based both on spectroscopic observations of molecular and atomic gas and on dust extinction data with Gaia. The shells are located at a distance between ~140 and ~190 pc, which is comparable to the distance of CrA, which we derived as (150.5 ± 6.3) pc. We also employed dust polarization observations from Planck to trace the magnetic- field structure of the shells. Both of them show patterns of magnetic-field lines following the edge of the shells consistently with the magnetic-field morphology of CrA. We estimated the magnetic-field strength at the intersection of the two shells via the Davis-Chandrasekhar-Fermi (DCF) method. Despite the many caveats that are behind the DCF method, we find a magnetic-field strength of (27 ± 8) ΌG, which is at least a factor of two larger than the magnetic-field strength computed off of the HI shells. This value is also significantly larger compared to the typical values of a few ΌG found in the diffuse HI gas from Zeeman splitting. We interpret this as the result of magnetic-field compression caused by the shell expansion. This study supports a scenario of molecular-cloud formation triggered by supersonic compression of cold magnetized HI gas from expanding interstellar bubbles
    • 

    corecore