1,628 research outputs found

    Source population synthesis and the Galactic diffuse gamma-ray emission

    Get PDF
    Population synthesis is used to study the contribution from undetected sources to the Galactic ridge emission measured by EGRET. Synthesized source counts are compared with the 3rd EGRET catalogue at low and high latitudes. For pulsar-like populations, 5-10% of the emission >100 MeV comes from sources below the EGRET threshold. A steeper luminosity function can increase this to 20% without violating EGRET source statistics. Less luminous populations can produce much higher values without being detected. Since the unresolved source spectrum is different from the interstellar spectrum, it could provide an explanation of the observed MeV and GeV excesses above the predictions, and we give an explicit example of how this could work.Comment: Astrophysics and Space Science, in press. (Proceedings of Conference 'The multi-messenger approach to high-energy gamma-ray sources', Barcelona, 2006). Minor changes for accepted version, updated reference

    Hemispheric Asymmetries in Cortical Thickness

    Get PDF
    Using magnetic resonance imaging and computational cortical pattern matching methods, we analyzed hemispheric differences in regional gray matter thickness across the lateral and medial cortices in young, healthy adults (n = 60). In addition, we investigated the influence of gender on the degree of thickness asymmetry. Results revealed global and regionally specific differences between the two hemispheres, with generally thicker cortex in the left hemisphere. Regions with significant leftward asymmetry were identified in the precentral gyrus, middle frontal, anterior temporal and superior parietal lobes, while rightward asymmetry was prominent in the inferior posterior temporal lobe and inferior frontal lobe. On the medial surface, significant rightward asymmetries were observed in posterior regions, while significant leftward asymmetries were evident from the vicinity of the paracentral gyrus extending anteriorly. Asymmetry profiles were similar in both sexes, but hemispheric differences appeared slightly pronounced in males compared with females, albeit a few regions also indicated greater asymmetry in females compared with males. Hemispheric differences in the thickness of the cortex might be related to hemisphere-specific functional specializations that are possibly related to behavioral asymmetrie

    Parasagittal Asymmetries of the Corpus Callosum

    Get PDF
    Significant relationships have been reported between midsagittal areas of the corpus callosum and the degree of interhemispheric transfer, functional lateralization and structural brain asymmetries. No study, however, has examined whether parasagittal callosal asymmetries (i.e. those close to the midline of the brain), which may be of specific functional consequence, are present in the human brain. Thus, we applied magnetic resonance imaging and novel computational surface-based methods to encode hemispheric differences in callosal thickness at a very high resolution. Discrete callosal areas were also compared between the hemispheres. Furthermore, acknowledging the frequently reported sex differences in callosal morphology, parasagittal callosal asymmetries were examined within each gender. Results showed significant rightward asymmetries of callosal thickness predominantly in the anterior body and anterior third of the callosum, suggesting a more diffuse functional organization of callosal projections in the right hemisphere. Asymmetries were increased in men, supporting the assumption of a sexually dimorphic organization of male and female brains that involves hemispheric relations and is reflected in the organization and distribution of callosal fiber

    Doublecortin-expressing cell types in temporal lobe epilepsy

    Get PDF
    Doublecortin (DCX) is widely regarded as a marker of immature and migrating neurons during development. While DCX expression persists in adults, particularly in the temporal lobe and neurogenic regions, it is unknown how seizures influence its expression. The aim of the present study was to explore the distribution and characteristics of DCX-expressing cells in surgical and postmortem samples from 40 adult and paediatric patients, with epilepsy and with or without hippocampal sclerosis (HS), compared to post mortem controls. The hippocampus (pes and body), parahippocampal gyrus, amygdala, temporal pole and temporal cortex were examined with DCX immunohistochemistry using four commercially-available DCX antibodies, labelled cells were quantified in different regions of interest as well as their co-expression with cell type specific markers (CD68, Iba1, GFAP, GFAP∂, nestin, SOX2, CD34, OLIG2, PDGFRβ, NeuN) and cell cycle marker (MCM2). Histological findings were compared with clinical data, as well as gene expression data obtained from the temporal cortex of 83 temporal lobe epilepsy cases with HS. DCX immunohistochemistry identified immature (Nestin-/NeuN-) neurons in layer II of the temporal neocortex in patients with and without epilepsy. Their number declined significantly with age but was not associated with the presence of hippocampal sclerosis, seizure semiology or memory dysfunction. DCX+ cells were prominent in the paralaminar nuclei and periamygdalar cortex and these declined with age but were not significantly associated with epilepsy history. DCX expressing cells with ramified processes were prominent in all regions, particularly in the hippocampal subgranular zone, where significantly increased numbers were observed in epilepsy samples compared to controls. DCX ramified cells co-expressed Iba1, CD68 and PDGFRβ, and less frequently MCM2, OLIG2 and SOX2, but no co-localization was observed with CD34, nestin or GFAP/GFAP ∂. Gene expression data from neocortical samples in patients with TLE and HS supported ongoing DCX expression in adults. We conclude that DCX identifies a range of morphological cell types in temporal lobe epilepsy, including immature populations, glial and microglial cell types. Their clinical relevance and biological function requires further study but we show some evidence for alteration with age and in epilepsy

    Solar Stereoscopy with STEREO/EUVI A and B spacecraft from small (6 deg) to large (170 deg) spacecraft separation angles

    Full text link
    We performed for the first time stereoscopic triangulation of coronal loops in active regions over the entire range of spacecraft separation angles (αsep6,43,89,127\alpha_{sep}\approx 6^\circ, 43^\circ, 89^\circ, 127^\circ, and 170170^\circ). The accuracy of stereoscopic correlation depends mostly on the viewing angle with respect to the solar surface for each spacecraft, which affects the stereoscopic correspondence identification of loops in image pairs. From a simple theoretical model we predict an optimum range of αsep22125\alpha_{sep} \approx 22^\circ-125^\circ, which is also experimentally confirmed. The best accuracy is generally obtained when an active region passes the central meridian (viewed from Earth), which yields a symmetric view for both STEREO spacecraft and causes minimum horizontal foreshortening. For the extended angular range of αsep6127\alpha_{sep}\approx 6^\circ-127^{\circ} we find a mean 3D misalignment angle of μPF2139\mu_{PF} \approx 21^\circ-39^\circ of stereoscopically triangulated loops with magnetic potential field models, and μFFF1521\mu_{FFF} \approx 15^\circ-21^\circ for a force-free field model, which is partly caused by stereoscopic uncertainties μSE9\mu_{SE} \approx 9^\circ. We predict optimum conditions for solar stereoscopy during the time intervals of 2012--2014, 2016--2017, and 2021--2023.Comment: Solar Physics, (in press), 22 pages, 9 figure

    Relationships Between Sulcal Asymmetries and Corpus Callosum Size: Gender and Handedness Effects

    Get PDF
    Magnetic resonance imaging was used to establish the presence and nature of relationships between sulcal asymmetries and mid-sagittal callosal size in neurologically intact subjects, and to determine the influences of sex and handedness. Against a background of long-standing disputes, effects of gender and handedness on callosal size, shape, and variability were additionally examined. Both positive and negative correlations between sulcal asymmetry and callosal size were observed, with effects influenced by sex and handedness. The direction of relationships, however, were dependent on the regional asymmetry measured and on whether real or absolute values were used to quantify sulcal asymmetries. Callosal measurements showed no significant effects of sex or handedness, although subtle differences in callosal shape were observed in anterior and posterior regions between males and females and surface variability was increased in males. Individual variations in callosal size appear to outrange any detectable divergences in size between groups. Relationships between sulcal asymmetries and callosal size, however, are influenced by both sex and handedness. Whether magnitudes of asymmetry are related to increases or decreases in callosal size appears dependent on the chosen indicators of asymmetry. It is an oversimplification, therefore, to assume a single relationship exists between cerebral asymmetries and callosal connection

    Status of inshore demersal scalefish stocks on the south coast of Western Australia. NRM Project 12034 Final Report

    Get PDF
    Inshore demersal scalefish in waters of 20-250 m depth in the South Coast Bioregion (SCB) are an important resource targeted by commercial, recreational and charter fishing sectors

    Next generation sequencing reveals widespread trypanosome diversity and polyparasitism in marsupials from Western Australia

    Get PDF
    In Western Australia a number of indigenous Trypanosoma spp. infect susceptible native marsupials, such as the woylie (Bettongia penicillata), brushtail possum (Trichosurus vulpecula), and chuditch (Dasyurus geoffroii). Two genotypes of Trypanosoma copemani (identified as G1 and G2) have been found in the woylie, and G2 has been implicated in the decline of this host species, making its presence of particular interest. Here we used targeted amplicon next generation sequencing (NGS) of the Trypanosoma 18S rDNA loci on 70 Trypanosoma-positive marsupial blood samples, to identify T. copemani genotypes and multiple Trypanosoma infections (polyparasitism) in woylies and cohabiting species in Western Australia. Polyparasitism with Trypanosoma spp. was found in 50% of the wildlife sampled, and within species diversity was high, with 85 zero-radius operational taxonomic units (ZOTUs) identified in nine putative parasite species. Trypanosoma copemani was assigned 17 ZOTUs and was identified in 80% of samples. The most abundant ZOTU isolated (63%) differed slightly from the published genotype of G1, and G2 was the second most abundant ZOTU (14%). Trypanosome diversity was significantly greater in woylies than in brushtail possums, and parasite community composition also differed significantly between these host species. One novel Trypanosoma spp. genotype (Trypanosoma sp. ANU2) was found in 20% of samples. A species of Crithidia was detected in a woylie, and two avian trypanosomes (Trypanosoma avium and Trypanosoma sp. AAT) were identified in woylies for the first time

    Failure regime in (1+1) dimensions in fibrous materials

    Full text link
    In this paper, we introduce a model for fracture in fibrous materials that takes into account the rupture height of the fibers, in contrast with previous models. Thus, we obtain the profile of the fracture and calculate its roughness, defined as the variance around the mean height. We investigate the relationship between the fracture roughness and the fracture toughness.Comment: 4 pages, 4 figures.eps, Revte
    corecore