1,015 research outputs found

    Numerical Relativity in D dimensional space-times: Collisions of unequal mass black holes

    Get PDF
    We present unequal mass head-on collisions of black holes in D = 5 dimensional space-times. We have simulated BH systems with mass ratios q = 1,1/2,1/3,1/4. We extract the total energy radiated throughout the collision and compute the linear momentum flux and the recoil velocity of the final black hole. The numerical results show very good agreement with point particle calculations when extrapolated to this limit

    Numerical Relativity in D dimensional space-times: Collisions of unequal mass black holes

    Get PDF
    We present unequal mass head-on collisions of black holes in D = 5 dimensional space-times. We have simulated BH systems with mass ratios q = 1,1/2,1/3,1/4. We extract the total energy radiated throughout the collision and compute the linear momentum flux and the recoil velocity of the final black hole. The numerical results show very good agreement with point particle calculations when extrapolated to this limit

    Numerical Relativity in D dimensional space-times: Collisions of unequal mass black holes

    Get PDF
    We present unequal mass head-on collisions of black holes in D = 5 dimensional space-times. We have simulated BH systems with mass ratios q = 1,1/2,1/3,1/4. We extract the total energy radiated throughout the collision and compute the linear momentum flux and the recoil velocity of the final black hole. The numerical results show very good agreement with point particle calculations when extrapolated to this limit

    Robust avoidance of edge-localized modes alongside gradient formation in the negative triangularity tokamak edge

    Full text link
    In a series of high performance diverted discharges on DIII-D, we demonstrate that strong negative triangularity (NT) shaping robustly suppresses all edge-localized mode (ELM) activity over a wide range of plasma conditions: ⟨n⟩=0.1−1.5×1020\langle n\rangle=0.1-1.5\times10^{20}m−3^{-3}, Paux=0−15P_\mathrm{aux}=0-15MW and ∣Bt∣=1−2.2|B_\mathrm{t}|=1-2.2T, corresponding to Ploss/PLH08∼8P_\mathrm{loss}/P_\mathrm{LH08}\sim8. The full dataset is consistent with the theoretical prediction that magnetic shear in the NT edge inhibits access to ELMing H-mode regimes; all experimental pressure profiles are found to be at or below the infinite-nn ballooning stability limit. Importantly, we also report enhanced edge pressure gradients at strong NT that are significantly steeper than in traditional ELM-free L-mode plasmas and provide significant promise for NT reactor integration.Comment: 5 pages, 5 figure

    CARD14 gain-of-function mutation alone is sufficient to drive IL-23/IL-17-mediated psoriasiform skin inflammation in vivo

    Full text link
    Rare autosomal dominant mutations in the gene encoding the keratinocyte signaling molecule, Caspase Recruitment Domain-Containing Protein 14 (CARD14), have been associated with an increased susceptibility to psoriasis but the physiological impact of CARD14 gain-of-function mutations remains to be fully determined in vivo. Here, we report that heterozygous mice harboring a CARD14 gain-of-function mutation (Card14ΔE138) spontaneously develop a chronic psoriatic phenotype with characteristic scaling skin lesions, epidermal thickening, keratinocyte hyperproliferation, hyperkeratosis and immune cell infiltration. Affected skin of these mice is characterized by elevated expression of anti-microbial peptides, chemokines and cytokines (including Th17 cell-signature cytokines), and an immune infiltrate rich in neutrophils, myeloid cells and T-cells, reminiscent of human psoriatic skin. Disease pathogenesis was driven by the IL-23/IL-17 axis and neutralization of IL-23p19, the key cytokine in maintaining Th17 cell polarization, significantly reduced skin lesions and the expression of antimicrobial peptides and pro-inflammatory cytokines. Therefore, hyperactivation of CARD14 alone is sufficient to orchestrate the complex immunopathogenesis that drives Th17-mediated psoriasis skin disease in vivo

    W+jets Matrix Elements and the Dipole Cascade

    Full text link
    We extend the algorithm for matching fixed-order tree-level matrix element generators with the Dipole Cascade Model in Ariadne to apply to processes with incoming hadrons. We test the algoritm on for the process W+n jets at the Tevatron, and find that the results are fairly insensitive to the cutoff used to regularize the soft and collinear divergencies in the tree-level matrix elements. We also investigate a few observables to check the sensitivity to the matrix element correction

    Equations of Motion of Spinning Relativistic Particle in Electromagnetic and Gravitational Fields

    Full text link
    We consider the motion of a spinning relativistic particle in external electromagnetic and gravitational fields, to first order in the external field, but to an arbitrary order in spin. The noncovariant spin formalism is crucial for the correct description of the influence of the spin on the particle trajectory. We show that the true coordinate of a relativistic spinning particle is its naive, common coordinate \r. Concrete calculations are performed up to second order in spin included. A simple derivation is presented for the gravitational spin-orbit and spin-spin interactions of a relativistic particle. We discuss the gravimagnetic moment (GM), a specific spin effect in general relativity. It is shown that for the Kerr black hole the gravimagnetic ratio, i.e., the coefficient at the GM, equals unity (just as for the charged Kerr hole the gyromagnetic ratio equals two). The equations of motion obtained for relativistic spinning particle in external gravitational field differ essentially from the Papapetrou equations.Comment: 32 pages, latex, Plenary talk at the Fairbank Meeting on the Lense--Thirring Effect, Rome-Pescara, 29/6-4/7 199

    Associations between health-related quality of life, physical function and fear of falling in older fallers receiving home care

    Get PDF
    Falls and injuries in older adults have significant consequences and costs, both personal and to society. Although having a high incidence of falls, high prevalence of fear of falling and a lower quality of life, older adults receiving home care are underrepresented in research on older fallers. The objective of this study is to determine the associations between health-related quality of life (HRQOL), fear of falling and physical function in older fallers receiving home care
    • …
    corecore