15,009 research outputs found

    Radio-frequency dressing of multiple Feshbach resonances

    Full text link
    We demonstrate and theoretically analyze the dressing of several proximate Feshbach resonances in Rb-87 using radio-frequency (rf) radiation. We present accurate measurements and characterizations of the resonances, and the dramatic changes in scattering properties that can arise through the rf dressing. Our scattering theory analysis yields quantitative agreement with the experimental data. We also present a simple interpretation of our results in terms of rf-coupled bound states interacting with the collision threshold.Comment: 4+ pages, 3 figures, 1 table; revised introduction & references to reflect published versio

    Effect of magnetic field on the phase transition in a dusty plasma

    Full text link
    The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.Comment: 9 pages, 5 figure

    Coherent states on spheres

    Get PDF
    We describe a family of coherent states and an associated resolution of the identity for a quantum particle whose classical configuration space is the d-dimensional sphere S^d. The coherent states are labeled by points in the associated phase space T*(S^d). These coherent states are NOT of Perelomov type but rather are constructed as the eigenvectors of suitably defined annihilation operators. We describe as well the Segal-Bargmann representation for the system, the associated unitary Segal-Bargmann transform, and a natural inversion formula. Although many of these results are in principle special cases of the results of B. Hall and M. Stenzel, we give here a substantially different description based on ideas of T. Thiemann and of K. Kowalski and J. Rembielinski. All of these results can be generalized to a system whose configuration space is an arbitrary compact symmetric space. We focus on the sphere case in order to be able to carry out the calculations in a self-contained and explicit way.Comment: Revised version. Submitted to J. Mathematical Physic

    The Effect of On-Line Videos on Learner Outcomes in a Mechanics of Materials Course

    Get PDF
    The Mechanics of Materials course is one of the core engineering courses included in the curriculum of mechanical, civil, mining, petroleum, marine, aeronautical, and several other engineering disciplines. As a core course, the Mechanics of Materials course typically has large enrollment. Initiatives aimed at improving the effectiveness of the engineering core courses can have a major impact on engineering education by virtue of the large number of students affected. Computers afford opportunities for creative instructional activities that are not possible in the traditional lecture-and-textbook class format. The study described in this paper examines the effectiveness of asynchronous online video that has been used in various ways in a Mechanics of Materials course over the past four years. The content delivered via the Internet included concept videos, problem-solving videos, and videos of demonstrations and laboratory activities. In this study, four differing approaches to present the Mechanics of Materials course to approximately 1000 students in 17 course sections over a four-year period were compared. The first approach involved traditional, face-to-face lectures. The second approach completely replaced the face-to-face lectures with videos recorded by the instructor outside of the classroom, but covering the same topics as the classroom lectures, and then posted to a class web site. The instructor was available in his office during class time to answer questions. The third approach combined face-to-face lectures with videos. The fourth approach was an inverted format where students watched videos at home and worked on homework during class. Using common final exam scores as a quantitative measure of effectiveness, results showed that overall student performance was maintained as class sizes and instructor workloads increased. Additionally, there was some indication that the inverted approach was better suited for higher-ability students

    Lepton Number Violating Radiative WW Decay in Models with R-parity Violation

    Full text link
    Models with explicit R-parity violation can induce new rare radiative decay modes of the WW boson into single supersymmetric particles which also violate lepton number. We examine the rate and signature for one such decay, W→l~γW\rightarrow \tilde l\gamma, and find that such a mode will be very difficult to observe, due its small branching fraction, even if the lepton number violating coupling in the superpotential is comparable in strength to electromagnetism. This parallels a similar result obtained earlier by Hewett in the case of radiative ZZ decays.Comment: 10 pages, 2 figures(available on request), LaTex, ANL-HEP-PR-92-8

    Cricket, migration and diasporic communities

    Get PDF
    Ever since different communities began processes of global migration, sport has been an integral feature in how we conceptualise and experience the notion of being part of a diaspora. Sport provides diasporic communities with a powerful means for creating transnational ties, but also shapes ideas of their ethnic and racial identities. In spite of this, theories of diaspora have been applied sparingly to sporting discourses. Due mainly to its central role in spreading dominant white racial narratives within the British Empire, and the various ways different ethnic groups have ‘played’ with the meanings and associations of the sport in the (post-)colonial period, cricket is an interesting focus for academic research. Despite W.G. Grace’s claim that cricket advances civilisation by promoting a common bond, binding together peoples of vastly different backgrounds, to this day cricket operates strict symbolic boundaries; defining those who do, and equally, do not belong. C.L.R. James’ now famous metaphor of looking ‘beyond the boundary’ captures the belief that, to fully understand the significance of cricket, and the sport’s roles in changing and shaping society, one must consider the wider social and political contexts within which the game is played. The collection of papers in this special issue does just that. Cricket acts as the point of departure in each, but the way in which ideas of power, representation and inequality are ‘played out’ is unique in each

    Testing asteroseismology with Gaia DR2: Hierarchical models of the Red Clump

    Get PDF
    Asteroseismology provides fundamental stellar parameters independent of distance, but subject to systematics under calibration. Gaia DR2 has provided parallaxes for a billion stars, which are offset by a parallax zero-point. Red Clump (RC) stars have a narrow spread in luminosity, thus functioning as standard candles to calibrate these systematics. This work measures how the magnitude and spread of the RC in the Kepler field are affected by changes to temperature and scaling relations for seismology, and changes to the parallax zero-point for Gaia. We use a sample of 5576 RC stars classified through asteroseismology. We apply hierarchical Bayesian latent variable models, finding the population level properties of the RC with seismology, and use those as priors on Gaia parallaxes to find the parallax zero-point offset. We then find the position of the RC using published values for the zero-point. We find a seismic temperature insensitive spread of the RC of ~0.03 mag in the 2MASS K band and a larger and slightly temperature-dependent spread of ~0.13 mag in the Gaia G band. This intrinsic dispersion in the K band provides a distance precision of ~1% for RC stars. Using Gaia data alone, we find a mean zero-point of -41 ±\pm 10 μ\muas. This offset yields RC absolute magnitudes of -1.634 ±\pm 0.018 in K and 0.546 ±\pm 0.016 in G. Obtaining these same values through seismology would require a global temperature shift of ~-70 K, which is compatible with known systematics in spectroscopy.Comment: Accepted for publication in MNRA

    The Word Problem for Omega-Terms over the Trotter-Weil Hierarchy

    Get PDF
    For two given ω\omega-terms α\alpha and β\beta, the word problem for ω\omega-terms over a variety V\boldsymbol{\mathrm{V}} asks whether α=β\alpha=\beta in all monoids in V\boldsymbol{\mathrm{V}}. We show that the word problem for ω\omega-terms over each level of the Trotter-Weil Hierarchy is decidable. More precisely, for every fixed variety in the Trotter-Weil Hierarchy, our approach yields an algorithm in nondeterministic logarithmic space (NL). In addition, we provide deterministic polynomial time algorithms which are more efficient than straightforward translations of the NL-algorithms. As an application of our results, we show that separability by the so-called corners of the Trotter-Weil Hierarchy is witnessed by ω\omega-terms (this property is also known as ω\omega-reducibility). In particular, the separation problem for the corners of the Trotter-Weil Hierarchy is decidable

    Open Architecture Standard for NASA's Software-Defined Space Telecommunications Radio Systems

    Get PDF
    NASA is developing an architecture standard for software-defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer. This paper presents the initial Space Telecommunications Radio System (STRS) Architecture for NASA missions to provide the desired software abstraction and flexibility while minimizing the resources necessary to support the architecture
    • …
    corecore