165 research outputs found

    Corrigendum: Targeting myeloid checkpoint molecules in combination with antibody therapy: A novel anti-cancer strategy with IgA antibodies?

    Get PDF
    In the published article, there was an error in Figure 5 as published. The mitochondrion was misplaced in this figure. The corrected Figure 5 and its caption appear below The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated

    Specific Targeting of Lymphoma Cells Using Semisynthetic Anti-Idiotype Shark Antibodies

    Get PDF
    The B-cell receptor (BCR) is a key player of the adaptive immune system. It is a unique part of immunoglobulin (Ig) molecules expressed on the surface of B cells. In case of many B- cell lymphomas, the tumor cells express a tumor-speci fi c and functionally active BCR, also known as idiotype. Utilizing the idiotype as target for lymphoma therapy has emerged to be demanding since the idiotype differs from patient to patient. Previous studies have shown that shark-derived antibody domains (vNARs) isolated from a semi-synthetic CDR3-randomized library allow for the rapid generation of anti-idiotype binders. In this study, we evaluated the potential of generating patient-speci fi c binders against the idiotype of lymphomas. To this end, the BCRs of three different lymphoma cell lines SUP-B8, Daudi, and IM-9 were identi fi ed, the variable domains were reformatted and the resulting monoclonal antibodies produced. The SUP-B8 BCR served as antigen in fl uorescence-activated cell sorting (FACS)-based screening of the yeast-displayed vNAR libraries which resulted after three rounds of screening in the enrichment of antigen-binding vNARs. Five vNARs were expressed as Fc fusion proteins and consequently analyzed for their binding to soluble antigen using biolayer interferometry (BLI) revealing binding constants in the lower single-digit nanomolar range. These variants showed speci fi c binding to the parental SUP-B8 cell line con fi rming a similar folding of the recombinantly expressed proteins compared with the native cell surface-presented BCR. First initial experiments to utilize the generated vNAR-Fc variants for BCR-clustering to induce apoptosis or ADCC/ADCP did not result in a signi fi cant decrease of cell viability. Here, we report an alternative approach for a personalized B-cell lymphoma therapy based on the construction of vNAR-Fc antibody-drug conjugates to enable speci fi c killing of malignant B cells, which may widen the therapeutic window for B-cell lymphoma therapy

    Oocysts of Isospora papionis in the skeletal muscles of chacma baboons

    Get PDF
    Numerous partially and fully sporulated oocysts of Isospora papionis were found in the skeletal muscles of two free-ranging adult male chacma baboons (Papio ursinus). Only one of them had I. papionis oocysts in the intestines and then only a few. The oocysts appeared potentially viable and provoked a mild inflammatory response.The importance of the parasite in this location in regard to its life-cycle is discussed.The articles have been scanned in colour with a HP Scanjet 5590;300dpi. adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format

    COMT val158met Polymorphism and Neural Pain Processing

    Get PDF
    A functional polymorphism (val158met) of the gene coding for Catechol-O-methyltransferase (COM) has been demonstrated to be related to processing of emotional stimuli. Also, this polymorphism has been found to be associated with pain regulation in healthy subjects. Therefore, we investigated a possible influence of this polymorphism on pain processing in healthy persons as well as in subjects with markedly reduced pain sensitivity in the context of Borderline Personality Disorder (BPD). Fifty females (25 patients with BPD and 25 healthy control participants) were included in this study. Genotype had a significant – though moderate - effect on pain sensitivity, but only in healthies. The number of val alleles was correlated with the BOLD response in several pain-processing brain regions, including dorsolateral prefrontal cortex, posterior parietal cortex, lateral globus pallidus, anterior and posterior insula. Within the subgroup of healthy participants, the number of val alleles was positively correlated with the BOLD response in posterior parietal, posterior cingulate, and dorsolateral prefrontal cortex. BPD patients revealed a positive correlation between the number of val alleles and BOLD signal in anterior and posterior insula. Thus, our data show that the val158met polymorphism in the COMT gene contributes significantly to inter-individual differences in neural pain processing: in healthy people, this polymorphism was more related to cognitive aspects of pain processing, whereas BPD patients with reduced pain sensitivity showed an association with activity in brain regions related to affective pain processing

    Loss of migratory traditions makes the endangered patagonian Huemul deer a year-round refugee in its summer habitat

    Get PDF
    The huemul (Hippocamelus bisulcus) is endangered, with 1500 deer split into >100 subpopulations along 2000 km of the Andes. Currently occupied areas are claimed-erroneously-to be critical prime habitats. We analyzed historical spatiotemporal behavior since current patterns represent only a fraction of pre-Columbian ones. Given the limited knowledge, the first group (n = 6) in Argentina was radio-marked to examine spatial behavior. Historically, huemul resided year-round in winter ranges, while some migrated seasonally, some using grasslands >200 km east of their current presence, reaching the Atlantic. Moreover, huemul anatomy is adapted to open unforested habitats, also corroborated by spotless fawns. Extreme naivety towards humans resulted in early extirpation on many winter ranges—preferentially occupied by humans, resulting in refugee huemul on surrounding mountain summer ranges. Radio-marked huemul remained in small ranges with minimal altitudinal movements, as known from other subpopulations. However, these resident areas documented here are typical summer ranges as evidenced by past migrations, and current usage for livestock. The huemul is the only cervid known to use mountain summer ranges year-round in reaction to anthropogenic activities. Losing migratory traditions is a major threat, and may explain their presently prevalent skeletal diseases, reduced longevity, and lacking recolonizations for most remaining huemul subpopulations.Fil: Fluck, Werner Thomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad de Basilea; Suiza. Administración de Parques Nacionales; ArgentinaFil: Smith Flueck, Jo Anne M.. Universidad Nacional del Comahue; Argentina. Parque Protegido Shoonem; Argentina. Deer Lab; ArgentinaFil: Escobar, Miguel E.. Parque Protegido Shoonem; ArgentinaFil: Zuliani, Melina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Fundación Bariloche; ArgentinaFil: Fuchs, Beat. Deer Lab; ArgentinaFil: Geist, Valerius. University of Calgary; CanadáFil: Heffelfinger, James R.. Arizona Game and Fish Department; Estados UnidosFil: Black de Decima, Patricia Ann. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Gizejewski, Zygmunt. Polish Academy of Sciences; ArgentinaFil: Vidal, Fernando. Univerdidad Santo Tomas; Chile. Centro de Conservacion y Manejo de Vida Silvestre; ChileFil: Barrio, Javier. Centro de Ornitología y Biodiversidad; PerúFil: Molinuevo, María Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas; ArgentinaFil: Monjeau, Jorge Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Fundación Bariloche; ArgentinaFil: Hoby, Stefan. Berne Animal Park; SuizaFil: Jiménez, Jaime M.. University of North Texas; Estados Unido

    Dual checkpoint blockade of CD47 and LILRB1 enhances CD20 antibody-dependent phagocytosis of lymphoma cells by macrophages

    Get PDF
    Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by ‘Don´t Eat Me!’ signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages

    Novel chimerized IgA CD20 antibodies : Improving neutrophil activation against CD20-positive malignancies

    Get PDF
    ABSTRACT Current combination therapies elicit high response rates in B cell malignancies, often using CD20 antibodies as the backbone of therapy. However, many patients eventually relapse or develop progressive disease. Therefore, novel CD20 antibodies combining multiple effector mechanisms were generated. To study whether neutrophil-mediated destruction of B cell malignancies can be added to the arsenal of effector mechanisms, we chimerized a panel of five previously described murine CD20 antibodies to the human IgG1, IgA1 and IgA2 isotype. Of this panel, we assessed in vitro antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and direct cell death induction capacity and studied the efficacy in two different in vivo mouse models. IgA antibodies outperformed IgG1 antibodies in neutrophil-mediated killing in vitro, both against CD20-expressing cell lines and primary patient material. In these assays, we observed loss of CD19 with both IgA and IgG antibodies. Therefore, we established a novel method to improve the assessment of B-cell depletion by CD20 antibodies by including CD24 as a stable cell marker. Subsequently, we demonstrated that only IgA antibodies were able to reduce B cell numbers in this context. Additionally, IgA antibodies showed efficacy in both an intraperitoneal tumor model with EL4 cells expressing huCD20 and in an adoptive transfer model with huCD20-expressing B cells. Taken together, we show that IgA, like IgG, can induce ADCC and CDC, but additionally triggers neutrophils to kill (malignant) B cells. We conclude that antibodies of the IgA isotype offer an attractive repertoire of effector mechanisms for the treatment of CD20-expressing malignancies.Peer reviewe

    HLA-DRB3/4/5 Matching Improves Outcome of Unrelated Hematopoietic Stem Cell Transplantation

    Get PDF
    The HLA-DRB3/4/5 loci are closely linked to the HLA-DRB1 gene. Mismatches in these loci occur with a frequency of about 8%–12% in otherwise 10/10 HLA-matched transplant pairs. There is preliminary evidence that these disparities may associate with increased acute graft-versus-host disease (GvHD) rates. The aim of this study was to analyze a large cohort of German patients and their donors for HLA-DRB3/4/5 compatibility and to correlate the HLA-DRB3/4/5 matching status with the outcome of unrelated hematopoietic stem cell transplantation (uHSCT). To this end, 3,410 patients and their respective donors were HLA-DRB3/4/5 and HLA-DPB1 typed by amplicon-based nextgeneration sequencing (NGS). All patients included received their first allogeneic transplant for malignant hematologic diseases between 2000 and 2014. Mismatches in the antigen recognition domain (ARD) of HLA-DRB3/4/5 genes were correlated with clinical outcome. HLA-DRB3/4/5 incompatibility was seen in 12.5% (n = 296) and 17.8% (n = 185) of the 10/10 and 9/10 HLA-matched cases, respectively. HLA-DRB3/4/5 mismatches in the ARD associated with a worse overall survival (OS), as shown in univariate (5-year OS: 46.1% vs. 39.8%, log-rank p = 0.038) and multivariate analyses [hazard ratio (HR) 1.25, 95% CI 1.02–1.54, p = 0.034] in the otherwise 10/10 HLAmatched subgroup. The worse outcome was mainly driven by a significantly higher nonrelapse mortality (HR 1.35, 95% CI 1.05–1.73, p = 0.017). In the 9/10 HLA-matched cases, the effect was not statistically significant. Our study results suggest that mismatches within the ARD of HLA-DRB3/4/5 genes significantly impact the outcome of otherwise fully matched uHSCT and support their consideration upon donor selection in the future

    HLA-DRB3/4/5 Matching Improves Outcome of Unrelated Hematopoietic Stem Cell Transplantation

    Get PDF
    The HLA-DRB3/4/5 loci are closely linked to the HLA-DRB1 gene. Mismatches in these loci occur with a frequency of about 8%–12% in otherwise 10/10 HLA-matched transplant pairs. There is preliminary evidence that these disparities may associate with increased acute graft-versus-host disease (GvHD) rates. The aim of this study was to analyze a large cohort of German patients and their donors for HLA-DRB3/4/5 compatibility and to correlate the HLA-DRB3/4/5 matching status with the outcome of unrelated hematopoietic stem cell transplantation (uHSCT). To this end, 3,410 patients and their respective donors were HLA-DRB3/4/5 and HLA-DPB1 typed by amplicon-based nextgeneration sequencing (NGS). All patients included received their first allogeneic transplant for malignant hematologic diseases between 2000 and 2014. Mismatches in the antigen recognition domain (ARD) of HLA-DRB3/4/5 genes were correlated with clinical outcome. HLA-DRB3/4/5 incompatibility was seen in 12.5% (n = 296) and 17.8% (n = 185) of the 10/10 and 9/10 HLA-matched cases, respectively. HLA-DRB3/4/5 mismatches in the ARD associated with a worse overall survival (OS), as shown in univariate (5-year OS: 46.1% vs. 39.8%, log-rank p = 0.038) and multivariate analyses [hazard ratio (HR) 1.25, 95% CI 1.02–1.54, p = 0.034] in the otherwise 10/10 HLAmatched subgroup. The worse outcome was mainly driven by a significantly higher nonrelapse mortality (HR 1.35, 95% CI 1.05–1.73, p = 0.017). In the 9/10 HLA-matched cases, the effect was not statistically significant. Our study results suggest that mismatches within the ARD of HLA-DRB3/4/5 genes significantly impact the outcome of otherwise fully matched uHSCT and support their consideration upon donor selection in the future
    corecore