312 research outputs found

    A Potential Role for the Interaction of Wolbachia Surface Proteins with the Brugia malayi Glycolytic Enzymes and Cytoskeleton in Maintenance of Endosymbiosis

    Get PDF
    The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium of the genus Wolbachia. The Wolbachia represent an attractive target for the control of filarial induced disease as elimination of the bacteria affects molting, reproduction and survival of the worms. The molecular basis for the symbiotic relationship between Wolbachia and their filarial hosts has yet to be elucidated. To identify proteins involved in this process, we focused on the Wolbachia surface proteins (WSPs), which are known to be involved in bacteria-host interactions in other bacterial systems. Two WSP-like proteins (wBm0152 and wBm0432) were localized to various host tissues of the B. malayi female adult worms and are present in the excretory/secretory products of the worms. We provide evidence that both of these proteins bind specifically to B. malayi crude protein extracts and to individual filarial proteins to create functional complexes. The wBm0432 interacts with several key enzymes involved in the host glycolytic pathway, including aldolase and enolase. The wBm0152 interacts with the host cytoskeletal proteins actin and tubulin. We also show these interactions in vitro and have verified that wBm0432 and B. malayi aldolase, as well as wBm0152 and B. malayi actin, co-localize to the vacuole surrounding Wolbachia. We propose that both WSP protein complexes interact with each other via the aldolase-actin link and/or via the possible interaction between the host's enolase and the cytoskeleton, and play a role in Wolbachia distribution during worm growth and embryogenesis. © 2013 Melnikow et al

    Genetic Variation in North American Black Flies in the Subgenus \u3ci\u3ePsilopelmia\u3c/i\u3e (\u3ci\u3eSimulium\u3c/i\u3e: Diptera: Simuliidae)

    Get PDF
    Resolution of the genetic heterogeneity of closely related insect species depends on the selection of reliable genetic markers derived from representative specimens. We report the results of a survey of genetic variability in nine species of black flies in the subgenus Psilopelmia Enderlein. Three regions of the mitochondrial genome and an amplicon including the internal transcribed spacer 1 of the nuclear ribosomal RNA gene cluster (ITS1) were amplified using the polymerase chain reaction (PCR), and the amplicons were examined for intraspecific and interspecific polymorphisms. Six of the seven Psilopelmia species that yielded PCR products in the ITS1 PCR reaction were found to generate products that were indistinguishable on the basis of size. Similarly, little interspecific variation was noted in the 16S rRNA amplicon among nine species of Psilopelmia assayed by heteroduplex analysis. In contrast, the remaining regions of the mitochondrial genome exhibited both intra- and inter-specific variation when analyzed by heteroduplex analysis. Information collected from the five amplicons could be employed to develop a classification scheme capable of distinguishing the nine species of Psilopelmia examined

    Evaluating the diagnostic test accuracy of molecular xenomonitoring methods for characterising the community burden of Onchocerciasis

    Get PDF
    Background: Molecular xenomonitoring (MX), the detection of parasite nucleic acid in the vector population, is recommended for onchocerciasis surveillance in elimination settings. However, the sensitivity of MX for detecting onchocerciasis-positive communities has not previously been evaluated. MX may have additional applications for control programmes but its utility is restricted by a limited understanding of the relationship between MX results and human prevalence. Methods: We conducted a systematic review of studies reporting the prevalence of Onchocerca volvulus DNA in wild-caught Simulium spp. flies (MX rate) and corresponding prevalence of microfilaria (mf) in humans. We evaluated the sensitivity of MX for detecting onchocerciasis-positive communities and describe the characteristics of studies with reduced sensitivity. We conducted a linear regression to evaluate the relationship between mf prevalence and MX rate. Results: We identified 15 relevant studies, with 13 studies comprising 34 study communities included in the quantitative analyses. Most communities were at advanced stages towards elimination and had no or extremely low human prevalence. MX detected positive flies in every study area with >1% mf prevalence, with the exception of one study conducted in the Venezuelan Amazonian focus. We identified a significant relationship between the two measurements, with mf prevalence accounting for half of the variation in MX rate (R2 0.50, p<0.001). Conclusion: MX is sensitive to communities with ongoing onchocerciasis transmission. It has potential to predict human mf prevalence, but further data is required to understand this relationship, particularly from MX surveys conducted earlier in control programmes before transmission has been interrupted

    encephalitis in Florida

    Get PDF
    Background: Eastern Equine Encephalitis virus (EEEV) is an alphavirus with high pathogenicity in both humans and horses. Florida continues to have the highest occurrence of human cases in the USA, with four fatalities recorded in 2010. Unlike other states, Florida supports year-round EEEV transmission. This research uses GIS to examine spatial patterns of documented horse cases during 2005–2010 in order to understand the relationships between habitat and transmission intensity of EEEV in Florida. Methods: Cumulative incidence rates of EEE in horses were calculated for each county. Two cluster analyses were performed using density-based spatial clustering of applications with noise (DBSCAN). The first analysis was based on regional clustering while the second focused on local clustering. Ecological associations of EEEV were examined using compositional analysis and Euclidean distance analysis to determine if the proportion or proximity of certain habitats played a role in transmission. Results: The DBSCAN algorithm identified five distinct regional spatial clusters that contained 360 of the 438 horse cases. The local clustering resulted in 18 separate clusters containing 105 of the 438 cases. Both the compositional analysis and Euclidean distance analysis indicated that the top five habitats positively associated with horse cases were rural residential areas, crop and pastureland, upland hardwood forests, vegetated non-forested wetlands, an

    Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections

    Get PDF
    Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites

    Clinical, serological and DNA testing in Bengo Province, Angola further reveals low filarial endemicity and opportunities for disease elimination

    Get PDF
    The prevalence of Loa loa, Onchocerca volvulus and Wuchereria bancrofti infections in an under-surveyed area of Bengo Province, Angola, was determined by surveying 22 communities with a combination of clinical, serological and DNA diagnostics. Additional information was collected on participants' duration of residency, access to mass drug administration, knowledge of insect vectors and use of bednets. A total of 1616 individuals (38.1% male: 61.9% female), with an average age of 43 years, were examined. For L. loa, 6.2% (n = 100/16616) individuals were found to have eyeworm, based on the rapid assessment procedure for loiasis (RAPLOA) surveys, and 11.5% (n =178/1543) based on nested PCR analyses of venous blood. L. loa prevalences in long-term residents (>10 years) and older individuals (>60 years) were significantly higher, and older men with eyeworm were better informed about Chrysops vectors. For O. volvulus, 4.7% (n = 74/1567) individuals were found to be positive by enzyme-linked immunosorbent assay (Ov 16 ELISA), with only three individuals reporting to have ever taken ivermectin. For W. bancrofti, no infections were found using the antigen-based immunochromatographic test (ICT) and real-time PCR analysis; however, 27 individuals presented with lymphatic filariasis (LF) related clinical conditions (lymphoedema = 11, hydrocoele = 14, both = 2). Just under half (45.5%) of the participants owned a bednet, with the majority (71.1%) sleeping under it the night before. Our approach of using combination diagnostics reveals the age-prevalence of loiasis alongside low endemicity of onchocerciasis and LF. Future research foci should be on identifying opportunities for more cost-effective ways to eliminate onchocerciasis and to develop innovative surveillance modalities for clinical LF for individual disease management and disability prevention

    Phenotypic and Molecular Analysis of the Effect of 20-hydroxyecdysone on the Human Filarial Parasite Brugia malayi

    Get PDF
    A homologue of the ecdysone receptor has been identified and shown to be responsive to 20- hydroxyecdysone in Brugia malayi. However, the role of this master regulator of insect development has not been delineated in filarial nematodes. Gravid adult female B. malayi cultured in the presence of 20-hydroxyecdysone produced significantly more microfilariae and abortive immature progeny than control worms, implicating the ecdysone receptor in regulation of embryogenesis and microfilarial development. Transcriptome analyses identified 30 genes whose expression was significantly up-regulated in 20-hydroxyecdysone-treated parasites compared with untreated controls. Of these, 18% were identified to be regulating transcription. A comparative proteomic analysis revealed 932 proteins to be present in greater amounts in extracts of 20- hydroxyecdysone-treated adult females than in extracts prepared from worms cultured in the absence of the hormone. Of the proteins exhibiting a greater than two-fold difference in the 20- hydroxyecdysone-treated versus untreated parasite extracts, 16% were involved in transcriptional regulation. RNA interference (RNAi) phenotype analysis of Caenorhabditis elegans orthologs revealed that phenotypes involved in developmental processes associated with embryogenesis were significantly over-represented in the transcripts and proteins that were up-regulated by exposure to 20-hydroxyecdysone. Taken together, the transcriptomic, proteomic and phenotypic data suggest that the filarial ecdysone receptor may play a role analogous to that in insects, where it serves as a regulator of egg development

    Transmission of Onchocerciasis in Wadelai Focus of Northwestern Uganda Has Been Interrupted and the Disease Eliminated

    Get PDF
    Wadelai, an isolated focus for onchocerciasis in northwest Uganda, was selected for piloting an onchocerciasis elimination strategy that was ultimately the precursor for countrywide onchocerciasis elimination policy. The Wadelai focus strategy was to increase ivermectin treatments from annual to semiannual frequency and expand geographic area in order to include communities with nodule rate of less than 20%. These communities had not been covered by the previous policy that sought to control onchocerciasis only as a public health problem. From 2006 to 2010, Wadelai program successfully attained ultimate treatment goal (UTG), treatment coverage of ≥90%, despite expanding from 19 to 34 communities and from 5,600 annual treatments to over 29,000 semiannual treatments. Evaluations in 2009 showed no microfilaria in skin snips of over 500 persons examined, and only 1 of 3011 children was IgG4 antibody positive to the OV16 recombinant antigen. No Simulium vectors were found, and their disappearance could have sped up interruption of transmission. Although twice-per-year treatment had an unclear role in interruption of transmission, the experience demonstrated that twice-per-year treatment is feasible in the Ugandan setting. The monitoring data support the conclusion that onchocerciasis has been eliminated from the Wadelai focus of Uganda

    Host-Feeding Patterns of Culex Mosquitoes in Relation to Trap Habitat

    Get PDF
    Mosquito feeding patterns identify vertebrate species potentially involved in the amplification of West Nile virus. In New York, northern cardinals (Cardinalis cardinalis) were the predominant hosts in most habitats. Crow (Corvus sp.) blood meals were most frequently identified from sewage treatment plant and storm water catch basin habitats

    Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning

    Get PDF
    Recent evidence suggests that, in some foci, elimination of onchocerciasis from Africa may be feasible with mass drug administration (MDA) of ivermectin. To achieve continental elimination of transmission, mapping surveys will need to be conducted across all implementation units (IUs) for which endemicity status is currently unknown. Using boosted regression tree models with optimised hyperparameter selection, we estimated environmental suitability for onchocerciasis at the 5 × 5-km resolution across Africa. In order to classify IUs that include locations that are environmentally suitable, we used receiver operating characteristic (ROC) analysis to identify an optimal threshold for suitability concordant with locations where onchocerciasis has been previously detected. This threshold value was then used to classify IUs (more suitable or less suitable) based on the location within the IU with the largest mean prediction. Mean estimates of environmental suitability suggest large areas across West and Central Africa, as well as focal areas of East Africa, are suitable for onchocerciasis transmission, consistent with the presence of current control and elimination of transmission efforts. The ROC analysis identified a mean environmental suitability index of 0·71 as a threshold to classify based on the location with the largest mean prediction within the IU. Of the IUs considered for mapping surveys, 50·2% exceed this threshold for suitability in at least one 5 × 5-km location. The formidable scale of data collection required to map onchocerciasis endemicity across the African continent presents an opportunity to use spatial data to identify areas likely to be suitable for onchocerciasis transmission. National onchocerciasis elimination programmes may wish to consider prioritising these IUs for mapping surveys as human resources, laboratory capacity, and programmatic schedules may constrain survey implementation, and possibly delaying MDA initiation in areas that would ultimately qualify
    corecore