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Abstract

The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium of the genus Wolbachia. The Wolbachia
represent an attractive target for the control of filarial induced disease as elimination of the bacteria affects molting,
reproduction and survival of the worms. The molecular basis for the symbiotic relationship between Wolbachia and their
filarial hosts has yet to be elucidated. To identify proteins involved in this process, we focused on the Wolbachia surface
proteins (WSPs), which are known to be involved in bacteria-host interactions in other bacterial systems. Two WSP-like
proteins (wBm0152 and wBm0432) were localized to various host tissues of the B. malayi female adult worms and are
present in the excretory/secretory products of the worms. We provide evidence that both of these proteins bind specifically
to B. malayi crude protein extracts and to individual filarial proteins to create functional complexes. The wBm0432 interacts
with several key enzymes involved in the host glycolytic pathway, including aldolase and enolase. The wBm0152 interacts
with the host cytoskeletal proteins actin and tubulin. We also show these interactions in vitro and have verified that
wBm0432 and B. malayi aldolase, as well as wBm0152 and B. malayi actin, co-localize to the vacuole surrounding Wolbachia.
We propose that both WSP protein complexes interact with each other via the aldolase-actin link and/or via the possible
interaction between the host’s enolase and the cytoskeleton, and play a role in Wolbachia distribution during worm growth
and embryogenesis.
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Introduction

Nematodes are responsible for the most common parasitic

infections of humans. In particular, the tissue-dwelling filarial

nematodes—including Onchocerca volvulus, Loa Loa, Wuchereria

bancrofti, Brugia timori and B. malayi (Bm)—cause the most severe

pathologies associated with these infections, including blindness,

extensive skin lesions (in long-standing disease) and elephantiasis [1–

3]. O. volvulus, the causative agent of onchocerciasis, affects nearly 37

million people in 34 countries and is most abundant in Africa, with

small foci in Southern and Central America [3]. Approximately 120

million individuals are infected with the causative agents of

lymphatic filaria W. bancrofti and B. malayi, and 40 million exhibit

clinical manifestations of disease [4,5]. The present control

programs are based on the mass administration of a small arsenal

of microfilaricidal drugs, and thus are vulnerable to possible failure

due to the potential development of drug resistance [5–9].

Additional research is critically needed to support the discovery of

novel drug targets, and thus expand the arsenal of agents targeting

the adult worm for the ultimate elimination of these infections [8].

Most filarial parasite species carry a Wolbachia endosymbiont, a

member of a genus of intracellular bacteria commonly found in

arthropods [10,11]. In insects, Wolbachia are primarily reproduc-

tive parasites [12–14]. Therefore, much of the research on

Wolbachia endosymbiosis in arthropods has focused on the

phenotypic changes caused by infection with the endobacterium,

as well as the potential practical applications of the phenotypic

alterations, which include cytoplasmic incompatibility, feminiza-

tion, reduction in host longevity [10] and resistance to viruses and

parasites [15]. In filarial nematodes, Wolbachia appear to have

evolved toward a mutualistic interaction. Spurred by the

availability of the genome data from both B. malayi [16] and its

Wolbachia endosymbiont (wBm) [17], research initially focused on

pathways that appeared to be defective in one organism and

compensated for by genes expressed in the symbiotic partner.

Such comparative research suggested that the intact biosynthetic

pathways for haem, nucleotides, riboflavin, and FAD comprise the

contributions potentially made by the bacteria to the development

and survival of the filarial nematodes [1,18,19]. Conversely, the

wBm genome lacks the complete biochemical pathways for de novo
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synthesis of biotin, coenzyme A, NAD, ubiquinone and folate.

Therefore, the filarial worms might provide these and other

molecules required for bacterial growth [16,17].

The co-dependency between Wolbachia and the filarial worms

was demonstrated by examining the worms after elimination of

Wolbachia by treatment with antibiotics such as tetracycline,

doxycycline or rifamycin [3,20,21]. Antibiotic treatments in

multiple in vitro and in vivo studies, including several clinical trials

in humans, were shown to induce an apoptotic response in treated

parasites [22] leading to strong anti-filarial effects, confirming the

essential role of Wolbachia in worm survival and reproduction [23–

30]. For instance, in the Onchocercidae, antibiotic treatment

induced retarded larval growth [31], embryostasis in female

worms [32], and even death of the adult filarial worms [3,33]. As

the survival and reproduction of the filarial host is dependent on

the presence of Wolbachia and its interactions with the endosym-

biont, this essential interaction has been the subject of intensive

studies to identify the Achilles’ heel of the symbiotic relationship

and thus novel putative chemotherapeutic targets for the

treatment of filarial infections [3,18,34,35].

To date, however, little is known about the underlying

molecular basis for the B. malayi - Wolbachia co-dependency. In

arthropods, a Wolbachia surface protein (WSP) was thought to be a

key player for the establishment and persistence of symbiosis, but

little is known about the role of this protein or its possible

interacting partners in arthropods [36]. The Wolbachia surface

proteins in filaria were hypothesized to interact with host proteins

in the formation of functional complexes necessary for worm

survival [20,36]. The B. malayi endosymbiont Wolbachia has seven

outer membrane proteins (OMPs) and WSPs [17]. These proteins

are highly conserved in Wolbachia from filarial nematodes and have

a heterogeneous pattern of amino acid diversity characteristic of

other OMPs known to be involved in bacteria-host interactions in

other systems [36–39]. Moreover, analysis of the B. malayi

secretome established that a number of Wolbachia OMPs were

secreted or released by the worm [40]. In a recent study, an

interacting pair of proteins comprised of a WSP-like protein

(wBm0284) and a B. malayi protein expressed in the cytoplasm of

the worms (Bm1_46455, accession# EDP30508.1) was identified

[41]. The co-localization of both proteins in similar locations

within Wolbachia as well as in the worm’s tissues, cuticle and nuclei

within embryos provided indirect evidence that this specific

interaction might have functional importance for the filarial

nematode and Wolbachia symbiosis [41].

In this study, we focused on two other members of the OMP/

WSP protein family of Wolbachia, wBm0432 and wBm0152. First,

we demonstrated that both wBm surface proteins bind specifically

to B. malayi crude protein extracts. Second, using in situ cross-

linking methodology of metabolically labeled worms, we estab-

lished that wBm0432 interacts in vivo with several key glycolytic

enzymes (GEs): fructose-bisphosphate aldolase, triosephosphate

isomerase, L-lactate dehydrogenase, enolase, glyceraldehyde-3-

phosphate dehydrogenase (G3PD), and phosphoglycerate kinase.

Notably, Wolbachia lacks two glycolytic enzymes (6-phosphofruc-

tokinase and pyruvate kinase), and consequently its glycolytic

pathway is thought to be defective and replaced by gluconeogenic

enzymes [17,18]. Accordingly, the energy source utilized by

Wolbachia will depend on products produced by the B. malayi

glycolytic pathway, such as pyruvate. Moreover, we show that

wBm0152 interacts in vivo with the host cytoskeletal proteins.

Finally, we confirmed these interactions in vitro and verified that

wBm0432 and B. malayi aldolase, as well as the proteins from the

second functional complex wBm0152 and B. malayi actin, co-

localize to the vacuole surrounding Wolbachia within the hypoder-

mal cord in female B. malayi worms. We further provide evidence

to support the theory that these two complexes—wBm0152/Bm-

actin and wBm0432/GEs—might be connected to each other via

the B. malayi aldolase-actin linkage, and/or the possible interaction

between the host’s enolase and cytoskeletal proteins. The results of

this study provide a novel molecular perspective on some of the

molecular complexes that support the endosymbiotic relationship

between B. malayi and Wolbachia.

Materials and Methods

Ethics statement
All animal studies were carried out in compliance with the

guidelines from the Institutional Animal Care and Use Committee

(IACUC) of the New York Blood Center and in accordance with

the recommendations in the Guide for the Care and Use of

Laboratory Animals from the National Institutes of Health. The

animal protocol (#224) was approved by the IACUC of the New

York Blood Center, New York, NY.

Cloning, expression and purification of the Wolbachia
surface proteins and B. malayi aldolase

The cDNA corresponding to the Wolbachia surface protein

genes wBm0152 and wBm0432, as well as B. malayi aldolase, were

amplified by PCR from female B. malayi random-primed cDNA

using gene-specific primer sets (Table 1). Cloning, expression and

purification of corresponding recombinant His tagged proteins in

E. coli was performed according to a previously reported

procedure [41]. The ,28 kDa His-wBm0432 and 48 kDa His-

Bm-aldolase fusion protein was purified under denaturing

conditions in 6 M urea using His Bind Columns (Novagen),

according to the manufacturer’s instructions and then dialyzed

using 50 mM Tris-HCl, 18 mM NaCl, 1 mM EDTA, pH 7.6.

The soluble 18 kDa His-wBm0152 fusion protein was purified

using HisNBind Columns (Novagen), according to the manufac-

turer’s instructions and then dialyzed with PBS. The purified

recombinant proteins were analyzed by SDS-PAGE. The protein

concentration was determined using NanoDrop 2000 (Thermo

Scientific).

Author Summary

The human filarial parasite Brugia malayi harbors a
Wolbachia endosymbiotic bacterium that is required for
normal reproduction and development. However, the
molecular basis of how this essential endosymbiotic
relationship is maintained is not understood. As a first
step in trying to understand the molecular interactions
that might be essential in this process, we focused on the
Wolbachia surface proteins (WSPs), which are known to be
involved in bacteria-host interactions in other systems. Our
aim was to determine whether there are any functional
interactions between some of these WSPs and the proteins
produced by the host parasite cells. We found that two of
the WSP family members specifically interact with proteins
produced by the host. Wolbachia wBm0432 interacted
with several key enzymes involved in the host glycolytic
pathway, the primary energy-producing pathway in the
cell. Wolbachia wBm0152 interacted with the host cyto-
skeleton. These findings suggest that WSP family proteins
might play important roles in both optimization of the
energy production pathway in B. malayi as well as in
anchoring the endosymbiont to the host’s cytoskeleton.

Wolbachia Surface Proteins and Endosymbiosis
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Binding of WSPs to B. malayi crude protein extracts using
an ELISA-based binding assay

B. malayi adult female worms (from 120 days post infection of

Mongolian jirds) were obtained from the NIAID/NIH Filariasis

Research Reagent Repository Center (FR3; Athens, GA; www.

filariasiscenter.org). Soluble phosphate buffered saline (PBS) crude

protein extracts of B. malayi female worms were prepared as

described previously [42] using Protease Inhibitor Cocktail

(Roche, Mannheim, Germany). Soluble crude protein extract

from adult A. viteae female worms was prepared in PBS (pH 7.4)

containing N-alpha -p-tosyl-L-lysine chloromethyl ketone (50 mg/

ml), N-tosyl-L-phenylalanine chloromethyl ketone (50 mg/ml), and

phenylmethylsulfonyl fluoride (1 mM) using a glass hand held

homogenizer. The A. viteae extract was a gift from Drs. William

Harnett and Katrina Houston from the University of Strathclyde,

Glasgow, Scotland.

A 96-well polystyrene plate (Corning Inc., Corning, NY, USA)

was coated with parasite crude protein extract (10 mg/ml) in

0.1 ml of PBS (pH 7.2) overnight at 4uC. The wells were then

washed 5 times with PBS-T (PBS plus 0.05% Tween 20) and

blocked with 3% BSA in PBS-T for 1 h at room temperature to

prevent nonspecific binding. After an additional washing step (5

times with PBS-T) His-wBm0152 or His-wBm0432 recombinant

fusion proteins were added to duplicate wells at different

concentrations (1–10 mg/ml) in binding buffer, and incubated

for 2 h at room temperature. 3% BSA in PBS-T was used as a

control for non-specific binding of the detecting antibodies to the

parasite extracts. Wells were washed three times with PBS-T and

the bound His-tagged protein was detected by probing with HRP

conjugated mouse anti-His monoclonal antibody (Genscript)

followed by development with a tetramethyl benzidine substrate

(Thermo Scientific), and reading the absorbance at 450 nm using

SpectraMAX190 (Molecular Devices). The ELISA-based assay

was repeated 3 times using crude protein extracts prepared from

different batches of B. malayi worms and one batch of A. viteae

extract. The BSA background values were subtracted from the

WSPs test wells absorbance. The absorbance in the control wells

was consistently below 0.08.

Production of antibodies against wBm0432 and
wBm0152 recombinant proteins

A group of five female BALB/c mice was immunized

subcutaneously with 30 mg of recombinant His-wBm0152 or

His-wBm0432 formulated in Sigma Adjuvant System as recom-

mended by the manufacturer (Sigma-Aldrich, St. Louis, MO,

USA) using an approved IACUC protocol (#224). Boost

immunizations were given on days 14 and 28 post-immunization.

Blood was collected pre-immunization and on day 14 after the

second boost. Pooled serum was analyzed by Western blot. The

corresponding bands of the recombinant His-wBm0152 and His-

wBm0432 proteins as well as their corresponding native proteins in

the B. malayi crude protein extract were detected using the antigen-

specific antibodies, whereas no bands were recognized when pre-

immunization serum was used (data not shown).

Affinity purification of putative Bm–wBm protein
complexes

We adapted a method used routinely for protein-protein

interaction studies in mammalian cells –in vitro metabolic labeling

with L-Photo-Leucine and L-Photo-Methionine amino acids,

followed by photo-activated in vivo cross linking and purification

of protein complexes for analysis [42]. Thermo Scientific L-Photo-

Leucine and L-Photo-Methionine are analogs of L-Leucine and L-

Methionine amino acids that have activatable diazirine side chains

capable of chemical crosslinking to adjacent molecules when

exposed to ultraviolet light. When used in combination with

specially formulated limiting cell media that is devoid of leucine

and methionine, the photo-activatable derivatives are treated like

naturally occurring amino acids by the protein synthesis machin-

ery. As a result, they can be substituted for leucine or methionine

in the primary sequence of proteins. When exposed to UV light

the diazirine rings become reactive intermediates that form

covalent bonds with nearby protein side chains and backbones.

Naturally associating binding partners are then instantly trapped.

Briefly, 300 adult B. malayi female worms were incubated

overnight in Dulbecco’s Modified Eagle’s Limiting Medium

(DMEM-LM) (Thermo Scientific) containing 2 mM L-Photo-

Methionine and 4 mM L-Photo-Leucine (Thermo Scientific)

without serum. The next morning the media containing the

photo-amino acids was removed from the worms and after

washing twice with PBS, the worms were covered with a minimal

layer of cold PBS and exposed to UV light (2615 watt bulbs,

emission at 350 nm; F15T8/350BLS/ECO) from a 4 cm distance

using the XX-15S Shortwave UV Bench Lamp (UVP, Upland,

CA). Under these conditions, the photo-reactive amino acid half-

life was determined to be 4 min. We irradiated the worms for

20 min; 5 times the half-life, as recommended by the manufacture.

A soluble crude protein extract of the labeled worms, including

various naturally associating cross-linked binding partners, was

prepared in PBS as described above. The protein concentration

was determined using NanoDrop 2000 (Thermo Scientific).

To affinity purify putative Bm–wBm protein complexes associ-

ated specifically with wBm0152 or wBm0432, affinity columns

containing IgG raised against wBm0152 or wBm0432 and

immobilized to Protein A/G Plus Agarose were prepared using

the Pierce Crosslink Immunoprecipitation Kit (Thermo Scientific)

according to the instruction of the manufacturer. The PBS soluble

crude protein extract prepared from the metabolically-labeled B.

Table 1. Sequences of gene specific primers used for cloning.

Gene name ID Primers

Outer membrane protein wBm0152 59-CACCGATACATTACTTGATGTAATGGAAG-39

59-CTATTTTTTCATTCCAGAAAATGA-39

Outer surface protein Wsp wBm0432 59-CACCTCTGCTTTTTCAGATCCTGTTGGT-39

59-TTAGAAATTAAACGCTATTCCAGCT-39

Fructose-bisphosphate aldolase Bm1_15350 59-CACCATGACTTCCTACTCTCAGTT-39

59-ATCTAGTACGCATGATTAGCAACA-39

doi:10.1371/journal.pntd.0002151.t001

Wolbachia Surface Proteins and Endosymbiosis
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malayi worms containing the UV induced cross-linking of

interacting proteins was first precleared with normal mouse IgG

immobilized to Protein A/G. Precleared aliquots of the extract

were then loaded onto the wBm0152 or wBm0432 immunoaffinity

columns and allowed to incubate overnight at 4uC. After extensive

washes of the columns, the bound material was eluted using

elution buffer, neutralized with TRIS-HCl, and then analyzed by

Western blotting. The eluted material (6 mg per lane) was loaded

on a 12% SDS-Tris-glycine gel (Bio-Rad), and the corresponding

nitrocellulose membrane strips were then washed, blocked with 16
Casein, and probed with primary mouse anti-wBm0152 or mouse

anti-wBm0432 antibodies. Binding was detected using goat anti-

mouse secondary antibodies conjugated to horseradish peroxidase

(KPL), and a chemiluminescent substrate (SuperSignal).

MS-based protein identification of the wBm0152- or the
wBm0432-specifically bound B. malayi material

MS-based protein identification of the wBm0152- or wBm0432-

specific bound samples containing putative UV induced cross-

linked interacting proteins was initiated by filter-aided sample

preparation (FASP), as previously described (Protein Discovery,

Knoxville, TN) [43]. Tryptic peptides resulting from the

preparation were analyzed by liquid chromatography mass

spectrometry (LC-MS). Briefly, chromatography was performed

using a Nano-LC Ultra 2D+ (Eksigent, Dublin, CA) equipped with

a Proteopep 2 IntegraFrit trapping column (100 mm i.d.62.5 cm;

C18, 5 mm, 300 ???) and a Proteopep 2 IntegraFrit analytical

column (75 mm i.d.610 cm; C18, 5 mm, 300 ???, New Objective,

Woburn, MA). Samples were loaded onto the trap column at 2 ml/

min (Solvent A) for 12 minutes, after which a valve was switched

to include the analytical column. Peptides were then eluted with a

gradient (300 nl/min) of 2% B to 80% B over 80 minutes (Solvent

A: 97.5% H2O, 2% acetonitrile, 0.5% formic acid, Solvent B:

1.5% H2O, 98% acetonitrile, 0.5% formic acid). Nano-LC effluent

was analyzed on-line by positive-ion micro-electrospray with a

linear ion trap (LTQ XL) or LTQ OrbiTrap XL (Thermo Fisher

Corp., Bremen, Germany) operated in ‘top-5 data-dependent’

acquisition mode. Resulting data were searched against a custom

built database with MASCOT (Matrix Science, Boston, MA).

Identified peptides and proteins were validated and visualized with

Scaffold 3.6 (Proteome Software, Portland, OR) at a 2% false

positive rate.

Overlay assays for protein-protein interaction analyses
Interaction of wBm0432 with rabbit Glycolytic enzymes

(GEs). The overlay assays were performed as previously

described [44]. In brief, rabbit GEs (Sigma) (Table 2), 3 mg per

each lane, were run on SDS-PAGE and transferred to nitrocel-

lulose membranes. The blots were blocked overnight with an

overlay assay buffer (50 mM HEPES, pH 7.3, 3 mM EGTA,

3 mM CaCl2, 3 mM MgCl2, 80 mM KC1) containing 0.1 mM

DTT and 5% (w/v) skim milk at 4uC, and then incubated with the

same buffer containing 3 mg/ml purified His-wBm0432 for 3 h at

room temperature. The membranes were washed several times

with Tris buffered saline (20 mM Tris-HCl, pH 7.5, 150 mM

NaCl) containing 0.05% Tween 20 before being reacted with

HRP conjugated mouse anti-His monoclonal antibody (Genscript)

overnight at 4uC. The membranes were developed using an

enhanced chemiluminescence kit (Pierce) as described by the

manufacturer.

Interaction of wBm0432 with B. malayi aldolase. Bm-

aldolase (3 mg per lane) was separated by SDS-PAGE and

transferred to nitrocellulose membrane. The membrane blot was

blocked overnight with overlay assay buffer at 4uC and then

incubated with the same buffer containing 2.5 mg/ml of purified

His-wBm0432 for 3 h at RT. To determine the Kd values for the

wBm0432 interaction with B. malayi aldolase, individual strips

containing aldolase were incubated with 1 mg/ml, 2 mg/ml, 5 mg/

ml or 10 mg/ml purified His-wBm0432 in overlay assay buffer for

3 h at room temperature. The membranes were washed and

developed as described above. The signals were quantified using

GeneSnap (Syngene) software.

Interaction between wBm0152 and actin and between

Bm-aldolase and actin. wBm0152 or Bm-aldolase, 3 mg per

lane, was separated by SDS-PAGE and transferred to nitrocellu-

lose membranes. The individual strips were blocked overnight

with overlay assay buffer at 4uC and then incubated with the same

buffer containing 2.5 mg/ml purified bovine actin (sequence

identity with Bm-actin is 98%) for 3 h at RT. The membranes

were washed as described above and reacted first with Goat anti-

actin (Santa Cruz) followed by the HRP-conjugated polyclonal

anti-goat antibodies (Santa Cruz) for 3 h. After the washings, the

membranes were developed as described above.

ELISA-based protein binding assay to test the interaction
between recombinant wBm0152 and actin

To verify the putative protein-protein interaction between the

recombinant His-wBm0152 and actin we used the ELISA-based

assay. The 96-well polystyrene plates (Corning Inc.) were coated

with the purified recombinant His-wBm0152 protein at 0.2 mg/ml

or 1 mg/ml as described above. The reactant bovine actin protein

(Sigma) was then added in duplicates at 1 mg/ml, 5 mg/ml or

20 mg/ml. The bound actin was detected using rabbit anti-actin

Table 2. GEs are conserved between O. cuniculus and B. malayi.

Protein name B. malayi (ID) B. malayi (Accession#)a O. cuniculus (Accession#)
Sequence
Identity

Fructose-bisphosphate aldolase Bm1_15350 EDP36623.1 NP_001075707.1 69%

Triosephosphate isomerase Bm1_29130 EDP33878.1 P00939.1 62%

L-lactate dehydrogenase Bm1_43730 EDP30958.1 NP_001182636.1 60%

Enolase Bm1_24115 EDP34873.1 XP_002716189.1 72%

Glyceraldehyde-3-phosphate
dehydrogenase

Bm1_41940 EDP31080.1/EDP31079.1 XP_002708267.1 69%

Phosphoglycerate kinase Bm1_01925 EDP39298.1 XP_002709046.1 73%

aBLAST searches were used to identify O. cuniculus GEs orthologs in B. malayi.
doi:10.1371/journal.pntd.0002151.t002
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polyclonal antibody (Genscript) followed by HRP-conjugated goat

anti-rabbit IgG (KPL). HRP was detected as described above.

Localization of wBm0152 and actin and wBm0432 and
Bm-aldolase in B. malayi worms by immunoelectron
microscopy

B. malayi female worms were fixed in a mixture of 4%

paraformaldehyde and 0.25% glutaraldehyde in 0.1 M sodium

cacodylate buffer (pH 7.4) containing 1% sucrose for 60 min at

room temperature and processed for immunoelectron microscopy

as described previously [45]. Thin sections of embedded worms

were blocked and probed with rabbit antibodies raised against

recombinant His-wBm0432 (1: 5 dilution) and mouse anti-Bm-

aldolase (1:2 dilution) antibodies followed by 15 nm or 10 nm gold

labeled goat anti-rabbit IgG (H+L) or 18 nm gold labeled goat

anti-mouse IgG (H+L) (Jackson ImmunoResearch Laboratories,

Inc., USA), respectively. Similarly, thin sections of embedded

worms were blocked and probed with mouse antibodies raised

against recombinant His-wBm0152 (1:2 dilution) and rabbit anti-

actin antibodies (1:20 dilution) followed by 15 nm or 18 nm gold

labeled goat anti-mouse IgG (H+L) or 15 nm gold labeled goat

anti-rabbit IgG (H+L) (Jackson ImmunoResearch Laboratories,

Inc., USA), respectively. Pre-immunization serum was used as the

control. No signals were detected in control experiments utilizing

pre-immunization sera (data not shown).

In addition, worms were processed for transmission immunoe-

lectron microscopy as described above with the exception of

sectioned material being post stained with 1% tannic acid, 2%

osmium tetroxide, saturated ethanolic uranyl acetate and Rey-

nolds lead citrate. Regular epon embedding was also performed on

the same sample in order to compare the effects of the two

different fixation protocols on the morphology of the B. malayi host

vacuole surrounding Wolbachia. Epon embedded processing

consisted of fixing the worms in modified Karnovsky’s fixative

consisting of 2.5% glutaraldehyde and 2% paraformaldehyde in

0.1 M sodium cacodylate buffer, pH 7.4, containing 1% sucrose

for 60 minutes at room temperature. Worms were then washed

3610 min in 0.1 M sodium cacodylate buffer and post fixed with

2% osmium tetroxide for 60 min. Following additional buffer

washes, worms were dehydrated through an ethanol series and

immersed in propylene oxide for 2610 min before being

embedded in Epon resin. Ultrathin sections were cut using an

RMC MTX ultramicrotome with a Diatome diamond knife

followed by post staining of the grids with saturated ethanolic

uranyl acetate and Reynolds lead citrate. Samples were imaged on

a FEI Tecnai 12 spirit TEM operated at 80 kV.

Results

Recombinant wBm0152 and wBm0432 WSP-like proteins
bind specifically to B. malayi protein extracts

To evaluate the possible interaction between the Wolbachia

surface proteins and B. malayi proteins, we utilized an in vitro

ELISA-based assay [41] using recombinant His-tagged WSPs and

B. malayi crude protein extract. The worm’s components contained

in the B. malayi soluble crude protein extract were immobilized on

the ELISA plates and then incubated with varying concentrations

of the recombinant His-tagged WSP proteins of wBm0100,

wBm0152 or wBm0432. The crude protein extract of Acanthochei-

lonema viteae, a filarial nematode that is free of Wolbachia, was used

as a control for possible non-specific binding [12,31,41,46]. As

shown in Figures 1A and 1B, 2 out of the 3 WSP proteins,

wBm0152 and wBm0432, bound specifically (P,0.05) in a dose-

dependent manner to the B. malayi crude protein extract, whereas

these Wolbachia proteins exhibited minimal binding capacity to the

A. viteae crude protein extract using similar assay conditions. Based

on the data presented later, it is possible that the minimal binding

to the A. viteae crude protein extract observed is due to cross-

reactivity with the glycolytic enzymes or the actin/tubulin proteins

in A. viteae that are presumed to be highly similar to those of B.

malayi. Notably, wBm0100 did not bind to the B. malayi crude

protein extract (Fig. 1C). These results indirectly established the

presence of putative binding partners within the B. malayi crude

protein extract that bind more specifically with the Wolbachia

surface proteins wBm0152 and wBm0432.

Detection of B. malayi – Wolbachia WSP protein
complexes within metabolically-labeled adult female
worm crude protein extracts containing UV induced
cross-linked interacting proteins

To identify the possible B. malayi interacting partners of

wBm0152 and wBm0432 in vivo, we adapted a method used

routinely for protein-protein interaction studies in mammalian

cells–in vitro metabolic labeling with L-Photo-Leucine and L-

Photo-Methionine amino acids, followed by photo-activated in vivo

cross linking, and immune-purification of protein complexes for

Figure 1. ELISA-based assay to test for possible interaction between Wolbachia WSP-like proteins and crude protein extracts of
parasitic filarial nematodes. Plates were coated with 10 mg/ml of crude protein extract prepared from B. malayi (which contains the wBm; solid
line) or A. viteae (which lacks the endosymbiont; dashed line) and were then exposed to varying concentrations of purified recombinant His-tagged
wBm0152 (A), wBm0432 (B), or wBm0100 (C). The binding was detected using HRP-conjugated anti-His antibodies. OD: optical density. Data represent
the mean absorbance at 450 nm 6 S.D. of three independent experiments. The binding of recombinant WSP protein to B. malayi crude extracts was
compared with its binding to A. viteae crude extract by a Student’s two-tailed t test (P,0.05).
doi:10.1371/journal.pntd.0002151.g001
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analysis [47]. In these experiments, B. malayi adult females were

metabolically labeled with L-Photo-Leucine and L-Photo-Methi-

onine amino acids, the parasites lysed and the metabolically

labeled proteins photo-cross-linked. The crude protein extract

prepared from these cross-linked metabolically-labeled B. malayi

worms was first precleared by passing it over an immunoaffinity

column consisting of IgG from a naive mouse immobilized with

Protein A/G. The native Wolbachia–B. malayi complexes were then

affinity-purified using IgG from mice immunized with recombi-

nant wBm0152 or wBm0432, again immobilized with Protein A/

G. The corresponding eluted fractions from anti-wBm0152 and

anti-wBm0432 immunoaffinity columns were then analyzed by

Western blot. An antiserum against wBm0432 revealed two

discrete bands in the eluted fraction: ,28 kDa and ,110 kDa

(Figure 2A). The expected molecular weight (MW) of an

unassociated native wBm0432 molecule is 26 kDa. Therefore,

we concluded that the lower band represented the native unbound

wBm0432, and that the higher broad band indicated the presence

of some putative wBm0432 – B. malayi protein complexes. The

anti-wBm0152 antibodies reacted with eluted proteins of ,90 kDa

and ,120 kDa (Fig. 2B). As the molecular weight of the native

protein wBm0152 protein is only 18 kDa, we concluded that the

two recognized protein bands correspond to some possible

wBm0152 – B. malayi protein complexes. Both of the affinity

purified fractions containing the putative protein complexes of

Wolbachia WSP and B. malayi proteins were analyzed by mass

spectrometry.

The wBm0432 interacts with the host glycolytic enzymes
and wBm0152 interacts with B. malayi cytoskeleton
proteins

The identity of the proteins contained within the affinity-

purified complexes were resolved using liquid chromatography

mass spectrometry (LC-MS) [48]. The complexes purified using

the anti-wBm0432 affinity column contained 9 peptides corre-

sponding to the sequence of the native wBm0432 protein. In

addition, peptides derived from six B. malayi proteins involved in

the glycolytic pathway were found in the digested affinity-purified

complexes: fructose-bisphosphate aldolase, triosephosphate isom-

erase, enolase, glyceraldehyde-3-phosphate dehydrogenase and

phosphoglycerate kinase, and L-lactate dehydrogenase (Table 3).

The protein with the most abundant tryptic peptides (five) was

fructose-bisphosphate aldolase (Bm1_15350, accession#
EDP36623.1) (Table 3). The proteins eluted from the anti-

wBm0152 affinity column included actin (Bm1_16810, accession#
EDP36330.1) and a- and b- tubulin (Table 3). However,

wBm0152 was not included in the list of proteins identified in

this analysis. These results suggested that wBm0432 may interact

directly or indirectly with six key enzymes involved in the host

glycolytic pathway, while wBm0152 may interact with the host

cytoskeleton.

The Wolbachia surface proteins interact specifically with
their B. malayi binding partners

To confirm the interaction between the two Wolbachia WSPs

and their B. malayi partner proteins, we utilized an in vitro overlay

assay [44]. Initially, we determined which of the GEs interact

directly and distinctively with wBm0432 by performing overlay

assays using commercially available rabbit glycolytic enzymes,

which were immobilized onto nitrocellulose. The sequence

identity of B. malayi proteins and Oryctolagus cuniculus (European

rabbit) proteins ranged from 62% to 72% (Table 2). As shown in

Figure 3B, wBm0432 binds strongly with enolase (Lane 1) and

aldolase (Lanes 2 and 3). The wBm0432 also interacted with

triosephosphate isomerase to some extent (Fig. 3B, Lane 5), and

had its weakest binding to L-lactate dehydrogenase (Fig. 3B, Lane

4). None of the GEs cross-reacted with the anti-His detecting

antibodies (Fig. 3A, Lanes 1–5).

To validate that wBm0432 interacts specifically with the filarial

host aldolase, we repeated the overlay assay with recombinant B.

malayi His-tagged aldolase (Bm1_15350) immobilized onto

nitrocellulose. As shown in Figure 4A, His-wBm0432 also

interacts specifically with His-Bm-aldolase (Fig. 4A, Lane 3).

Moreover, anti-His-wBm0432 (Fig. 4A, Lane 2) or anti-His-

wBm0293, an unrelated Wolbachia protein, (data not shown)

antibodies did not cross-react with the immobilized aldolase. To

determine the experimental dissociation constant (Kd) for the

wBm0432 and B. malayi aldolase interaction, individual strips of

the immobilized recombinant B. malayi aldolase were incubated

with different concentrations of wBm0432 (Fig. 4B). The

calculated Kd value of 0.5160.2 mM further highlighted the

specificity of the interaction between wBm0432 and B. malayi

aldolase.

As shown in Figure 4C, soluble bovine actin, which is .90%

identical to B. malayi actin, interacted specifically with the His-

wBm0152 protein (Lane 3). The specificity of the anti-actin

antibodies (Fig. 4C, Lane 1) was verified by establishing that

they did not cross-react with His-wBm0152 (Fig. 4C, Lane 2).

Notably, the interaction between actin and wBm0152 is the

strongest when the Wolbachia protein is polymerized and runs in

the gel as a tetramer (,54 kDa) (Fig. 4C, Lanes 3 and 4).

Subsequently, using ELISA-based interaction assays, the exper-

imental dissociation constant (Kd) of wBm0152 and bovine actin

was determined to be 0.5760.03 mM, indicating a high binding

affinity [49] (Fig. 4D).

In summary, these in vitro binding assays further supported

our LC-MS analyses that wBm0432 interacts specifically with

Bm-aldolase, and that wBm0152 interacts specifically with

actin.

Figure 2. Detection of Bm-wBm protein complexes within crude
cross-linked metabolically labeled worm extract using anti-
wBm0432 or anti-wBm0152 antibodies. L-Photo-Leucine and L-
Photo-Methionine metabolically labeled B. malayi worms were cross-
linked for 20 minutes using UV followed by soluble protein crude
extract preparation. The soluble extract was passed through an affinity
column containing Protein G cross-linked to normal mouse IgG
followed by affinity columns containing anti-wBm0432 or anti-
wBm0152 antibodies cross-linked to Protein G. The corresponding
protein eluates (6 mg/Lane) were run on a SDS-PAGE prior to Western
blotting with (A) mouse anti-wBm0432 specific antibodies (bands: ,110
& 28 kDa) or (B) mouse anti-wBm0152 specific antibodies (bands:
,90 kDa and ,120 kDa).
doi:10.1371/journal.pntd.0002151.g002
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The Wolbachia surface proteins wBm0432 and wBm0152
co-localize with their corresponding B. malayi binding
partners, aldolase and actin, in vivo

The interaction for each of the two protein complexes,

wBm0432-aldolase and wBm0152-actin, was confirmed in situ by

immunoelectron microscopy using rabbit anti-wBm0432 antise-

rum and mouse anti-Bm-aldolase antiserum, and mouse anti-

wBm0152 antiserum and rabbit anti-actin antibodies, respectively.

The wBm0432 protein localized to the surface of Wolbachia (Fig. 5A

and 5C), as previously shown [41,50]. Immunolocalization of Bm-

aldolase established that aldolase was also present close to the

Table 3. Composition of the B. malayi – Wolbachia WSP protein complexes identified by LC-MS analyses.

anti-wBm0432a

Protein identified Accession # Gene ID No. peptides detected

Outer surface protein WSP YP_198262.1 wBm0432 9

Fructose-bisphosphate aldolase ** EDP36623.1 Bm1_15350 5

Triosephosphate isomerase ** EDP33878.1 Bm1_29130 4

Histone H2B EDP39185.1 Bm1_02510 3

L-lactate dehydrogenase ** EDP30958.1 Bm1_43730 3

Myotactin form B, putative EDP28983.1 Bm1_53510 3

High mobility group protein 1 EDP34582.1 Bm1_25620 3

Enolase ** EDP34873.1 Bm1_24115 2

Glyceraldehyde-3-phosphate dehydrogenase** EDP31079.1 Bm1_41940 2

Heat shock 70 kDa protein EDP30947.1 Bm1_43675 2

Phosphoglycerate kinase ** EDP39298.1 Bm1_01925 2

14-3-3-like protein 2, putative EDP36044.1 Bm1_18190 2

anti-wBm0152a

Protein identified Accession # Gene ID No. peptides detected

Actin* EDP36330.1 Bm1_16810 10

Tubulin alpha chain* EDP33743.1 Bm1_30260 3

Beta-tubulin* EDP34538.1 Bm1_25780 3

ATP synthase subunit beta EDP30409.1 Bm1_45960 3

Tubulin alpha chain-mouse* EDP31997.1 Bm1_38680 2

Elongation factor 1-alpha EDP37757.1 Bm1_09680 2

aPhoto-activated crosslinked adult female B. malayi extracts complexes were eluted from affinity columns containing anti-wBm0432 or anti-wBm0152 antibodies bound
to protein G.
**: members of the glycolytic enzymes.
*: cytoskeleton complexes.
doi:10.1371/journal.pntd.0002151.t003

Figure 3. Interaction between Wolbachia WSP wBm0432 and glycolytic enzymes in vitro. Enolase (Lane 1), aldolase iV (Lane 2), aldolase X
(Lane 3), glyceraldehyde-3-phosphate dehydrogenase (Lane 4), triosephosphate isomerase (Lane 5), and recombinant His-tagged wBm0432 (Lane 6),
3 mg each, were blotted onto nitrocellulose membrane and incubated for 3 h with binding buffer (A) or with 2 mg/ml of recombinant His-wBm0432
(B). Binding was detected using HRP-conjugated mouse anti-His antibodies.
doi:10.1371/journal.pntd.0002151.g003
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surface of Wolbachia (Fig. 5B and 5C). Subsequent double labeling

of similar cross-sections of B. malayi adult female worms with both

antibodies co-localized the corresponding proteins to the surface of

the vacuole that surrounds Wolbachia within the cytoplasm of the

B. malayi host (Fig. 5C).

Additional transmission electron microscopy experiments were

performed to examine the structure of the B. malayi host vacuole

surrounding Wolbachia in the hypodermal chord. The appearance

of the vacuole was found to be considerably altered in a fixation-

dependent manner. Worms processed for immunoelectron

microscopy utilizing a less stringent fixation protocol were

observed to have a large halo surrounding the bacteria (Fig. S1,

Panels A and B). To better examine the host vacuole structure in

the immunoelectron microscopy samples, sectioned material was

post stained with 1% tannic acid, 2% osmium tetroxide, saturated

ethanolic uranyl acetate and Renolds lead citrate in order to stain

membranes and microfilament structures associated with the host

vacuole. For comparison, worms were processed for structural

electron microscopy studies from the same sample but utilizing a

more stringent fixation protocol. These samples were found to lack

the large halo seen in immunoelectron microscopy preparations

(Fig. S1, Panels C and D) and in fact were virtually indistinguish-

able from the host cytoplasm in some areas.

Closer examination of the vacuole from the samples in Figure

S1, Panels A and B revealed that the perceived vacuole boundary

was comprised of a dense material that appeared to lack a bilayer

membrane that is found in traditional membrane bound vacuoles

(black arrow heads, Fig. S2). However, it is possible that a

membrane is either masked by the large amount of proteinaceous

material present at the boundary, or not well preserved in these

Figure 4. Interaction between Wolbachia WSPs and actin or B. malayi aldolase in vitro. (A) Aldolase overlay assay: Recombinant His-tagged
B. malayi aldolase (3 mg) was blotted onto nitrocellulose membrane and individual strips were incubated for 3 h with: binding buffer (Lanes 1 & 2);
2 mg/ml of recombinant His-wBm0432 (Lane 3); and 2 mg/ml His-wBm0293 (Lane 4), an unrelated Wolbachia protein. Binding was detected using the
following antibodies: mouse anti-His-Bm-aldolase (Lane 1); mouse anti-His-wBm0432 (Lanes 2 & 3), and mouse anti-His-wBm0293 (Lane 4), followed
by HRP-conjugated secondary goat anti-mouse antibodies. (B) The Kd of Wolbachia wBm0432 and aldolase interaction was determined by an overlay
assay using recombinant His-tagged B. malayi aldolase (3 mg/Lane) blotted onto nitrocellulose membrane and incubation of the individual strips for
3 h with: 1, 2, 5 or 10 mg/ml of recombinant His-wBm0432. Binding was detected using mouse anti-His-wBm0432. (C) Actin overlay assay: Purified
bovine actin (3 mg, Lane 1) and recombinant His- wBm0152 (3 mg, Lanes 2–4) were blotted onto nitrocellulose membrane and individual strips were
incubated for 3 h with: binding buffer (Lanes 1, 2, 4) or 2.5 mg/ml of bovine actin (Lane 3). Binding was detected using rabbit anti-actin (Lanes 1, 2, 3)
or mouse anti-His-wBm0152 (Lane 4) followed by HRP-conjugated goat anti-rabbit or goat anti-mouse antibodies, respectively. (D) The Kd of
Wolbachia wBm0152 and actin interaction was determined by ELISA-based assay. A plate coated with 20 mg/ml of His-wBm0152 was exposed to
varying concentrations of bovine actin. The binding was detected using rabbit Anti-actin polyclonal antibody followed by HRP-conjugated goat anti-
rabbit IgG.
doi:10.1371/journal.pntd.0002151.g004
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samples. In addition, microfilaments were observed to be adjacent

to the vacuole boundary (broad white arrows, Fig. S2). Labeling of

adult female B. malayi worms using mouse anti-wBm0152

antiserum demonstrated that the protein is present on the surface

and in the areas surrounding Wolbachia (Fig. 5D). Rabbit anti actin

antibodies appeared to cross-react with a B. malayi actin protein

within the tissue surrounding Wolbachia (Fig. 5E). Notably, double

labeling of similar cross-sections of B. malayi adult female worms

with both antibodies co-localized the corresponding proteins to the

surface of the vacuole that surrounds Wolbachia within the

cytoplasm of the B. malayi host (Fig. 5F). These results verify that

the Wolbachia WSP proteins, wBm0432 and wBm0152, interact

with their corresponding complex partner proteins Bm-aldolase

and Bm-actin within B. malayi.

Aldolase is the putative link between wBm0432/GEs and
wBm0152/cytoskeleton protein complexes

Previous studies have shown that aldolase not only catalyzes a

key step in glycolysis but that it is also able to bind to F-actin in

cells such as endothelial cells and fibroblasts, as well as in

apicomplexan parasites [51–53]. Given this role in other

organisms, the possible interaction between B. malayi aldolase

and actin was explored. The overlay assay demonstrated that B.

malayi aldolase binds specifically to actin (Fig. 6, Lane 3) but not to

tubulin (data not shown). The specificity of the goat anti-actin

antibodies is shown in Figure 6, which shows a specific interaction

with actin (Lane 1) but no cross-reaction with aldolase (Lane 2).

This interaction between the filarial aldolase and actin might

therefore provide a link between the two Wolbachia - B. malayi

protein complexes we identified by LC-MS analysis and confirmed

by other assays: wBm0432 with B. malayi glycolytic enzymes and

wBm0152 with the B. malayi host cytoskeleton.

Discussion

The filarial nematode and its endosymbiont are known to be co-

dependent, but the cellular and molecular basis of this relationship

has yet to be elucidated. Eliminating Wolbachia from the parasites

using antibiotics affects molting, reproduction, and survival of the

worms, indicating that the bacteria are crucial for the development

of the parasite; thus, they represent an attractive target for control

of the infections [20,54,55]. Wolbachia occupy the lateral cords of

all stages of the filarial worms, and in female worms, they can be

found in oocytes and embryonic stages within the uteri [56]. The

Wolbachia OMPs, including the WSP-like family proteins were

predicted to play an important role in communicating with the

parasite to maintain homeostasis in the endosymbiotic relationship

[36–39].

The Wolbachia surface protein wBm0432 was found to associate

with six enzymes involved in glycolysis: fructose-bisphosphate

aldolase, triosephosphate isomerase, L-lactate dehydrogenase,

enolase, glyceraldehyde-3-phosphate dehydrogenase (G3PD), and

phosphoglycerate kinase. Notably, analysis of the available

genome data revealed that Wolbachia lacks two glycolytic enzymes

(6-phosphofructokinase and pyruvate kinase), and consequently its

glycolytic pathway is thought to be defective and replaced by

gluconeogenic enzymes [17,18]. Accordingly, the energy source

utilized by Wolbachia will depend on products produced by the B.

malayi glycolytic pathway, such as pyruvate. The ability of

Wolbachia to sequester several GEs onto their surface by creating

a complex with wBm0432 can increase the speed of glucose

breakdown and thus synthesis of pyruvate. The pyruvate, once

transported into the bacterial cell, can enter the TCA cycle,

resulting in energy production [57].

The Wolbachia wBm0152 protein was found to form a complex

with the B. malayi cytoskeleton proteins actin and tubulin. This

finding is concordant with many previous studies that have

demonstrated a close association of Wolbachia and other intracel-

lular bacteria with the host cell cytoskeleton. Both actin and

tubulin are known to play an important role in distribution of

Figure 7. The model for Bm-wBm interactions. The complex of
wBm0432 with the GE proteins is potentially associated with the
complex of wBm0152/cytoskeletal proteins via aldolase and/or enolase.
doi:10.1371/journal.pntd.0002151.g007

Figure 5. Co-localization of Wolbachia WSP protein wBm0432 with Bm-aldolase and wBm0152 with Bm-actin. Cross sections of the
hypodermal cord in female worms were probed with rabbit anti-wBm0432 (A), mouse anti-Bm-aldolase (B), or both (C), followed by anti-rabbit gold
(15 nm in A and 10 nm in C) or anti-mouse gold (18 nm in B and C). Cross sections of the hypodermal cord in female worms were probed with mouse
anti-wBm0152 (D), rabbit anti-actin (E), or both (F) followed by anti-mouse gold (15 nm in D and 18 nm in F) or anti-rabbit gold (15 nm in D and
10 nm in F). Bar: Panels A–F - 500 nm, inserts in Panels C and F - 100 nm. Note the proximity of wBm0432 and aldolase (insert in C) as well as that of
the wBm0152 and actin within the Wolbachia vacuole (insert in F).
doi:10.1371/journal.pntd.0002151.g005

Figure 6. Overlay assay to prove the interaction between Bm-
aldolase and actin. Actin (Lane 1) or recombinant His-tagged Bm-
aldolase (3 mg) (Lanes 2 and 3) were blotted onto nitrocellulose
membrane and the individual strips were incubated for 3 h with:
binding buffer (Lanes 1 and 2) or 2.5 mg/ml of bovine actin (Lane 3).
Binding was detected using goat anti-actin followed by HRP-
conjugated anti-goat antibodies.
doi:10.1371/journal.pntd.0002151.g006
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intracellular organisms [58–63]. Rickettsia, obligate intracellular

gram-negative bacteria and close relatives of Wolbachia, exhibit

actin-based motility in the cytosol of host cells involving the RickA

surface protein [60,62]. Listeria monocytogenes and Shigella flexneri

bacteria are internalized first into the host cells and then rapidly

escape from the internalization vacuole into the cytosol, where

they polymerize actin on their surface and initiate actin-based

motility [64]. This property is not only restricted to Rickettsia,

Listeria and Shigella but it also applies to other pathogens including

apicomplexa and mycobacterial species such as Mycobacterium

marinum and Burkholderia pseudomallei [59,62]. The functional

interactions between Wolbachia and the host microtubules have

been well documented in arthropods where Wolbachia utilize

microtubules for normal anterior localization in the Drosophila

oocyte to ensure its transmission to the next generation [58].

Treatment with colchicine resulted in complete depolymerization

of microtubules within the germ cells resulting in the failure of

Wolbachia to localize to the anterior of the Drosophila oocyte. It was

proposed that these interactions might also play a role in bacterial

motility and replication, ultimately leading to their efficient

maternal transmission [58]. However, the exact cellular and

molecular mechanism underlying this association is still unknown.

In the present study of B. malayi-wBm endosymbiotic relation-

ship, we show that wBm0152 forms a complex with both actin and

tubulin but that it interacts directly only with actin based on the

overlay assays. Accordingly, we hypothesize that Wolbachia interact

with the host microtubules indirectly through the wBm0152-actin

link. In B. malayi, Wolbachia was previously shown to be present

near the host’s actin bundles and actin-rich rachis as determined

by immunofluorescence [65]. It was shown that Wolbachia localize

to the posterior of the egg upon fertilization and segregate

asymmetrically during early embryogenesis in a lineage-specific

manner. Therefore, it was speculated that these segregation

patterns are responsible for determining the ultimate colonization

of adult female tissues [65]. In this study we show that the WSP

wBm0152 protein co-localized with actin to the surface of the

vacuole that surrounds Wolbachia by immunoelectron microscopy.

Hence, the interaction between wBm0152 and the host cytoskel-

eton might support wBm migration and segregation in host tissue

during development, a process needed for its fitness and survival.

WSP wBm0152 has been previously identified as a peptidogly-

can associated lipoprotein (PAL), which is instrumental in the

induction of innate toll receptor-mediated immune responses to

Wolbachia that are associated with the pathogenesis of the human

filarial parasites [66]. The diacyl lipid moieties present on native

wBm0152 have been shown to be important mediators in this

response [66]. Thus, wBm0152 is likely to form an important part

of the peptidoglycan layer of the Wolbachia cell wall, and as such it

is expected to be tightly embedded into the peptidoglycan matrix.

If this is the case, wBm0152 would become highly crosslinked in

the experiments described above; perhaps explaining why no

native peptides corresponding to wBm0152 were detected in the

analysis of the crosslinked products immunoaffinity purified using

columns containing antibodies raised against recombinant

wBm0152.

Although the presence of wBm0152 on the outer surface of

Wolbachia is expected based upon its functional classification as a

PAL, the present immunolocalization studies also suggest that it is

present as well in the vacuole surrounding the endosymbiont. This

finding is in keeping with previous studies that have shown the

production of secretory vacuoles from Wolbachia [67] and the fact

that wBm0152 has previously been identified as a member of the

secretome of the Wolbachia endosymbiont of B. malayi [40].

Together, these studies support the hypothesis that wBm0152

might play an important role in the association of the endosym-

biont to the cytoskeleton of the host cell.

Several reports have shown the dependency of nematode fitness

on tubulin and actin functions. The targeting of b-tubulin in B.

malayi adult worms and Haemonchus contortus larvae using the RNA

interference (RNAi) technology led not only to a reduction in the

levels of their transcripts but also to detrimental phenotypes

[68,69]. RNAi targeting of B. malayi b-tubulin resulted in parasite

death [68] while in H. contortus it resulted in decreased L3 worm

motility that slowed their development to L4, in comparison to

control larvae [69]. RNAi targeting c-tubulin in B. malayi resulted

in cellular disorganization in embryos [70]. Similar effects were

observed after knocking down transcript levels of actin (Ls-act) by

RNAi in the rodent filaria Litomosoides sigmodontis [71]. Two

phenotypes were seen with Ls-act targeted RNAi: paralysis, as

demonstrated by the worm being stretched out and having slower

movements and significant reduction in the release of microfilaria.

It would be interesting to expand on these filarial RNAi studies

and establish whether there is also a synergistic impact of the

RNAi upon the biology of Wolbachia and its distribution within the

filarial host.

In mammalian tissues, the enzymes of the glycolytic pathway

utilize cytoskeleton as a matrix to keep phosphofructokinase,

aldolase and G3PD in an optimal alignment for rapid substrate

conversion [72,73]. For instance, in red blood cells, several GEs

(GAPDH, aldolase, and phosphofructokinase) assemble in com-

plexes with the cell’s cytoskeleton [72,73], and their proximity with

each other increases the speed of glucose breakdown. In previous

studies of bovine brain tissue, aldolase, lactate dehydrogenase

type-M, pyruvate kinase, and G3PD were shown to co-pellet with

microtubules, with Kd values between 1 and 4 mM [74]. More

recent studies have shown that enolase isoforms purified from

mouse brain and mouse striated muscles interact with microtu-

bules during muscle satellite cell differentiation [75]. Aldolase in

other systems is known to play a dual role, participating in

glycolysis as soluble enzyme and forming a complex with the actin

cytoskeleton filaments (F-actin) in vitro and in vivo, when it is

enzymatically inactive [76,77]. Aldolase is tetrameric and each

monomer has the capacity to bind to F-actin [77]. In intracellular

apicomplexan parasites, the translocation of parasites is facilitated

by a link between cell surface adhesins, aldolase and actin where

aldolase is a bridge between the adhesins and the cytoskeleton

[51].

The data we present suggest that B. malayi aldolase might

provide a link between the two protein complexes we identified

in this study. Bm-aldolase binds to actin, while wBm0432 binds

strongly to aldolase and possibly also to enolase and to some

extent to G3PD and triosephosphate isomerase, but not to

actin or tubulin. We therefore hypothesize that as in the

apicomplexa, malaria and Toxoplasma [78,79], aldolase might

play a dual role also in the B. malayi-Wolbachia endosymbiotic

relationship. In addition to its central role in glycolysis,

aldolase might also mediate the interaction between Wolbachia

and the host’s cytoskeleton (Fig. 7). First, it may complex with

the WSP wBm0432 protein and other GEs, providing

Wolbachia with sequestered production of pyruvate and thus

ATP. This would be in keeping with the ‘‘supplemental

mitochondrion’’ hypothesis, which has been proposed as one

role that the Wolbachia endosymbiont might play in the host-

endosymbiont relationship [80]. It may also function as an

anchor between Wolbachia and the B. malayi cytoskeleton using

the ATP produced at the surface as an energy source to engage

the actin cytoskeletal network to support its motility and

distribution within the host.
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Future studies will verify the functional involvement of the

wBm0432/glycolytic enzymes and wBm0152/cytoskeletal proteins

in Wolbachia’s transmission patterns within the B. malayi host.

Additional studies will also be needed to validate the essential role

of these two Bm-wBm interactomes for the survival of B. malayi and

its co-dependency on Wolbachia.

Supporting Information

Figure S1 Fixation artifact observed in the vacuole
surrounding Wolbachia. Images of Wolbachia residing in the

hypodermal chord of B. malayi using two different fixation methods

are presented in Panels A–D. Panels A and B are representative of

LR white embedded specimens exhibiting the typical ‘‘halo’’

surrounding Wolbachia in the hypodermal chord tissue. Panels C

and D show the same cross-section sample that was prepared

utilizing the fixation protocol for Epon embedding, and which

lacks the large halos surrounding the Wolbachia.

(TIF)

Figure S2 Structure of the host’s vacuole surrounding
Wolbachia in an LR white preparation. A higher magnifi-

cation of the sample shown in Figure S1, Panels A and B is

showing a single Wolbachia with a surrounding vacuole exhibiting

the halo artifact. The cell wall of Wolbachia is clearly shown (black

arrow), as is a portion of the vacuole boundary (black arrowheads).

In addition, a filamentous network is evident along the vacuole

border (thick white arrows).

(TIF)
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