2,223 research outputs found

    Sewage Pollution in Kapoho Tide Pools (Preliminary Study)

    Get PDF
    UH

    Counting tritangent planes of space curves

    Get PDF

    Quantitative Characteristics of Gene Regulation by Small RNA

    Get PDF
    An increasing number of small RNAs (sRNAs) have been shown to regulate critical pathways in prokaryotes and eukaryotes. In bacteria, regulation by trans-encoded sRNAs is predominantly found in the coordination of intricate stress responses. The mechanisms by which sRNAs modulate expression of its targets are diverse. In common to most is the possibility that interference with the translation of mRNA targets may also alter the abundance of functional sRNAs. Aiming to understand the unique role played by sRNAs in gene regulation, we studied examples from two distinct classes of bacterial sRNAs in Escherichia coli using a quantitative approach combining experiment and theory. Our results demonstrate that sRNA provides a novel mode of gene regulation, with characteristics distinct from those of protein-mediated gene regulation. These include a threshold-linear response with a tunable threshold, a robust noise resistance characteristic, and a built-in capability for hierarchical cross-talk. Knowledge of these special features of sRNA-mediated regulation may be crucial toward understanding the subtle functions that sRNAs can play in coordinating various stress-relief pathways. Our results may also help guide the design of synthetic genetic circuits that have properties difficult to attain with protein regulators alone

    Glacial History of the Amundsen Sea Shelf

    Get PDF
    This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time.This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas? This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon.This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS

    Late Pleistocene Interactions of East and West Antarctic Ice-Flow Regimes: Evidence from the McMurdo Ice Shelf

    Get PDF
    We present new interpretations of deglaciation in McMurdo Sound and the western Ross Sea, with observationally based reconstructions of interactions between East and West Antarctic ice at the last glacial maximum (LGM), 16 000, 12 000, 8000 and 4000 sp. At the LGM? East Antarctic ice from Mulock Glacier split, one branch turned westward south of Ross Island but the other branch rounded Ross Island before flowing southwest into McMurdo Sound. This flow regime, constrained by an ice saddle north of Ross Island, is consistent with the reconstruction of Stuiver and others (1981a). After the LGM, grounding-line retreat was most rapid in areas with greatest water depth, especially along the Victoria Land coast. By 12 000 sp, the ice-now regime in McMurdo Sound changed to through-flowing Mulock Glacier ice, with lesser contributions from Koettlitz, Blue and Ferrar Glaciers, because the former ice saddle north of Ross Island was replaced by a dome. The modern flew regime was established similar to 4000 BP. Ice derived from high elevations on the Polar Plateau but now stranded on the McMurdo Ice Shelf, and the pattern of the Transantarctic Mountains erratics support our reconstructions of Mulock Glacier ice rounding Minna Bluff but with all ice from Skelton Glacier ablating south of the bluff. They are inconsistent with Drewry\u27s (1979) LGM reconstruction that includes Skelton Glacier ice in the McMurdo-Sound through-flow. Drewry\u27s (1979) model closely approximates our results for 12 000-4000 BP. Ice-sheet modeling holds promise for determining whether deglaciation proceeded by grounding-line retreat of an ice sheet that was largely stagnant, because it never approached equilibrium flowline profiles after the Ross Ice Shelf, grounded, or of a dynamic ice sheet with flowline profiles kept low by active ice streams that extended northward from present-day outlet glaciers after the Ross Ice Shelf grounded

    The Relationship between Real-Time EEG Engagement, Distraction and Workload Estimates and Simulator-Based Driving Performance

    Get PDF
    Identifying potentially impaired drivers is often dependent upon using cognitive testing from a controlled environment (clinic, laboratory) to predict behavior in a dynamic and unpredictable real world driving environment. The goal of this study was to determine the feasibility, and validity, of using a wireless EEG system to ultimately differentiate between impaired and unimpaired drivers. We utilized the B-Alert X10 portable wireless EEG/ECG system and applied previously validated EEG algorithms estimating engagement, workload, and distraction within a sample of normal control (n = 10) and HIV seropositive individuals (n = 14). Participants underwent a 30-minute fully interactive driving simulation. Overall, the HIV+ group evidenced significantly higher distraction during the simulation. When grouped according to poor and good performers on the simulation (regardless of HIV serostatus), those performing worse on the simulation had higher distraction, with a trend for lower workload, levels. We then examined EEG profiles immediately preceding a crash. Prior to a crash, participants evidenced a significant increase in distraction ~ 10-14 seconds leading up to the crash; the greatest increase was seen in the HIV+ group. These preliminary data support the potential utility of using EEG data in patient populations to identify individuals who might be at risk for impaired drivin

    Pulse frequency techniques for automatic control

    Get PDF
    This thesis describes an investigation into the suitability of pulse frequency modulation (PFM) as a standard form of signal for representing quantities in process control. The encoding and decoding of PFM signals into both analogue and digital forms is examined in some detail. PFM is shown to be well suited for high accuracy telemetry at moderate cost, provided ample channel band-width is available. The processing of the information in PFM signals by means of binary logic devices is treated systematically. Functional building blocks are identified, and shown to be capable of performing all the basic algebraic and differential operations needed for control. The thesis concludes with an examination of applications and a discussion of PFM transducers, actuators and hierarchical control schemes. The performance constraints of two different process controllers are identified. Both controllers show ‘P+I’ action; one works continuously, the other has a cyclic action; both employ PFM techniques. They are shown to offer dynamic responses similar to those of conventional analogue controllers, in conjunction with high accuracy (e. g. errors less than ½%), computer compatibility and the facility for digital display
    corecore