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LET C be a smooth simple closed curve in Iw3. A tritangent plane of C is a plane in W3 which 
is tangent to C at exactly three points. A stall x of C is a point of C at which the torsion of C is 
zero. We will say that a stall x is transoerse if the curvature of C is non-zero at x, the derivative 
of the torsion of C is non-zero at x, and the osculating plane P of C at x is transverse to C away 
from x. If x is a transverse stall of C then an interval of C about x lies on one side of the 
osculating plane P of C at x, so P intersects Cat an even number 2n of points other than x. The 
integer n = n(x, C) is the index of the transverse stall x of C. 

Let Coc(S’, rW3) be the space of C” maps ~1: S’ -+ W3 with the Whitney topology. 

THEOREM. There is an open dense subset A ofCm (S I, rW3) such that ifa E A then C = a(S ‘) 
is a simple curve with a$nite number T(C) of tritangent planes and afinite number of stalls 
Xl,. . . . ) xk, all of which are transverse. 1 a E A then 

T(C) E i n(x,, C) (mod 2). 
i=l 

An explicit description of the set A is given in Section 1 below. This theorem generalizes 
the result of M. Freedman that a generic smooth closed space curve with nonvanishing 
torsion has an even number of tritangent planes [43. 

To prove the theorem, we consider the classical dual surface C* consisting of all planes in 
Iw3 tangent to C. We use the theory of singularities of maps to analyze the singularities of C*. 
The tritangent planes of C correspond to triple points of C*, and the stalls of C correspond to 
swallowtail points of C* (cf. [3]). Then we count the triple points of C* using a 
generalization of the techniques of [l]. 

As this paper was in its final stages of preparation, we received a letter from Tetsuya 
Ozawa announcing an integer formula for the triple tangent planes. Properly indexed, the 
sum of the tritangent planes equals the sum of the stalls, each stall counting + n(x, C) times. 
Ozawa also has a formula relating the stalls and osculating planes which are tangent to the 
curve at two points. 

81. 

Let A be the subset of Cm(S1, 
following seven conditions. 

Local conditions: 

THE GENERIC SET A. 

H3) consisting of all maps a: S’ -, lR3 satisfying the 

1. a is regular, i.e. a’(t) # 0 for all t ES’. 
2. The curvature K of a is never zero. 
3. The zeros of the torsion r of a are nondegenerate, i.e., T(t) = 0 implies r’(t) # 0. 

Global conditions: 
4. a is injective. 
5. No plane P in Iw3 is tangent to a at more than three points. If P is tangent to a at three 

points then the three points are non-collinear. 

l Supported in part by NSF grants MC579-01310. MC579-04905. MCS-8102759. 
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6. No plane is an osculating plane to the curve at two distinct points. If P is the osculating 
plane of c( at x = B(t), then P is tangent to a at most at one other point y, and the point y 
does not lie on the tangent line to the curve at x. 

7. If P is the osculating plane of a at x = a(f) and r(t) = 0, then P is tangent to a at no point 
other than x. 

PROPOSITION 1. A is an open dense set ofC”(S’, R3). 

Proof. The density of A follows by standard applications of the multi-jet form of the 
Thorn transversality theorem. We will show that A is open as a corollary of Proposition 2. 

§2. THE DUAL SURFACE C*. 

Let C c Iw3 be a smooth closed curve. We embed R3 in projective space p3 in the usual 

way ((x1,x2,x3) + Cl,x,,x,, x,]), so that P3 is just R3 together with all the points in the 
projective plane at infinity. The dual projective space ( P3)* is the space of all projective 
planes in p3, which correspond to all the affine planes in R3 plus the plane at infinity. Let 
C* c ( P3)* be the set of planes tangent to C. Then C* is a .ruled surface in ( P3)* 
parametrized by C. A ruling of C * consists of all the planes containing a fixed tangent line of 

$3. THE FAMILY Fc. 

Counting tritangent planes to a curve is a problem of the contact of planes with a curve. 
This can be attacked by studying the singularities of the restriction to C of a family of 
mappings on R3 whose fibres are planes. Planes with exceptional contact with C should create 
singularities in the new family of maps obtained by restriction to C. 

We consider the family of orthogonal projections of the curve C to all lines through the 
origin in R3. 

Let P2 be the space of lines through the origin in !R3, and let L( p2) be the tautological line 
bundle over P2: 

L(P2)= {(U,f)ElR3X P2IDEI). 

For 1 E P2 let Q: C + I be the restriction to C of the orthogonal projection of R3 to 1. Define 

F,: c x IFp2 + L( @) 

by F,(x, f) = (II,(x), f). Let C be the set of critical points of Fc. Then (x, r) E C if and only if the 
plane P through x perpendicular to I is tangent to C at x. Letfc: E + ( P3)* take (x, r) to this 
plane P. We have a commutative diagram 

n vi 

where i sends (u, r) to the plane through the point u perpendicular to the line 1. Clearly Z Z C 
x [Fs’ andi, = C*. 

PROPOSITION 2. The map F, is stable if and only if a E A, where C = a(S’). 

Proof. We first show that the stability of F, as a germ at every (x, r) is equivalent to 
conditions 1, 2, and 3 of the definition of A. We may assume that a is parametrized by arc 
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length c. Choosing local coordinates on L( p2), F, has the form: 

Fc(t, 1) = (a(r). r, r) 

where v is a unit vector in the line 1. (We may choose either unit vector as long as we are 
consistent.) 

Since F, is the identity on the base P2, so that the rank of DF, 2 2, the only singularities 
which can occur are Morin singularities. The fold locus is given by a’(r). u = 0, the cusp locus 
is the subset determined by the additional equation a”(t). u = 0, while the swallowtail locus 
satisfies the additional equation a”‘(t)+u = 0. (The next higher singularity locus would also 
satisfy a”“(C) . u = 0.) 

The equation a’(c). v = 0 is equivalent to the plane P with normal 1 through a(t) being 
tangent to Cat a(t); if a”(c). u = rc(t)n(t). u = 0 also holds, then either P is the osculating plane 
and v is f b(c), the binormal of a at t, or K(C) = 0 where I is the curvature at c. 

The point (c, f) is in the swallowtail locus if a”‘(t). u = (~‘n(t) - K2a’(c) - icTb(c)). u = 0. If 
K(C) # 0 this holds if r(c) = 0. (If K(C) = 0, then this holds for all v in the plane spanned by the 
binormal vector and tangent vector.) It is easy to check that a”‘(c). u = 0 at a swallowtail of Fc 
if and only if r’(t) = 0. 

These singularities will be exhibited transversely provided that at a cusp Dpz (a’(r). u) # 0 
and at a swallowtail D,z (a’(c). u), Dp (a”(c). u) are independent. 

To check these statements we may choose local coordinates on S’, p2 and L( p2) so that 
Fc has the form 

(t, ul, r2) -+ (a@).(~,, r2, I), rl, r2), 

a(r). (u,, 02, 1) = Cul -&K2C3Ul ++Kt’U, +iKt3U2 -;K?t3 + H, 

where H consists of terms of order 2 4 in t. 
To achieve this form, rotate so that the Frenet frame of a at c = 0 is (( 1, 0, 0), (0, LO), 

(0, 0, 1)). The point of interest is given by t = 0, r1 = u2 = 0. 

Then Dp~(a’(t)~u)~,=,, = (1,0) and Dpz(a”(c).u)l,=O = (0, K(O)). 

Thus cusps appear transversely as long as a is an immersion (condition 1 in the definition of 
A), and swallowtails appear transversely as long as K(O) # 0 (condition 2). To exclude higher 
order (and non-stable) singularities we require r’(c) # 0 if r(c) = 0 (condition 3). 

These conditions are then equivalent to the local stability of Fc 16, Prop. 6.2., p. 1911. 
The additional conditions that the mapping F, must satisfy to be stable are global. We 

must have that the image of F, jC(F,) is in general position with itself ([6, prop 6.3, p. 1921). 
Suppose at F,(c,, r) = Fc(t,, c), C* has an ordinary double point, 1 orthogonal to a’(r,), 

a’(c,). We may assume a(tO) = (0, 0, 0), and 1 determined by (0, 0, 1). The images of DFc at 
(co, r) and (cl, r) give the tangent planes to the two branches of C* at F,(t,, c), since DFc has 
rank 2 at these points and the kernel of DF, is not tangent to Z(F,) at these points. Let CI 
= (1,O. 0) and b = (0, 1, 0), vectors orthogonal to u which determines 1. The image of DF, at 
(c, r) is spanned by (a(c).a, LO) and (a(c).6,0, 1) given (c, ~)EZ(F~). Hence, the normal to the 
image is given by (1, -a(c). a, - a(r). b). 

Returning to (to, f) and (cl, [), the respective normals are (l,O, 0) and (1, -a(ti).a, - 
a(c,).b). These are not parallel if a.a(r,) or b.a(c,) are different from zero if and only if 

a@,) f a@,). 
Similar reasoning shows that C* has an ordinary triple point at F (c, r) iff C has a tritangent 

plane with normal 1 at a(c,), a(t,), a(c,) with a(c,), a(c,), a(t2) non-collinear. 
Finally we show that the cuspidal edge of C* intersects C* transversely provided 

condition 6 holds. The first part of condition 6 is equivalent to saying that no cuspidal edge of 
C* intersects another cuspidal edge. The second part is equivalent to saying that triple points 
of C* do not occur at a cuspidal edge. 

Assume that a@,) = (O,O, 0), NC,) = (0, 0, l), Fdr,, W,)) = F&, W,)), dc,) # 0, 
bra’ = 0, but b(c,) # b(c,). Since F, has a simple cusp at (co, b(Q), we know that 
F,(c, b(c)) is an immersion for values of c close to rO. The normal to the image of DF, at 
F,(c,. b(c,)) is (1, -adz, -b.a(ti)) where a is the tangent vector to C at a(c,) and b 
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= n(t,,), the normal vector. The condition that the tangent to the cuspidal edge lies outside the 
tangent plane to C* at F,(ti, b(t,)) is that (1, -a.~@,), -b.~(tl)).(a(t,).b’(t,), 0, 
r(r,)) + 0. Since a([,) = (O,O, 0) and r(tO) # 0, the condition becomes b .a(tI) # 0, or a(t,) 
does not lie on the tangent line to C at a(t,). 

The condition that C* has no quadruple points is equivalent to the first part of condition 
5, while the condition that C* does not have a self-intersection at a swallowtail point is 
equivalent to condition 7. 

Thus a is in A if and only if Fc is stable at each (r, r) and F,-(Z(F,)) is in general position. 
This implies that a E A if and only if Fc is stable. 

COROLLARY. The set A is open in C “(S ‘, BB3) as well as dense. 

Proof. Consider the mapping G: Cm(S’, R3)+Cm(S1 x P’, R3 x P2) defined by 
G(a)(t,l) = (a(r), I) and the mapping F: C”(S’ x UJ2, Iw3 x P2) + Cm(S’ x P2, L( a2)) 
defined by F(h) =fi h wheref(u, r) = (II,(a),/). The mapping G is clearly continuous in the 
Whitney topology, while the mapping F is also, for F is just the composition of maps in 
Cm@’ x [FP~, R3 x P’) with a fixed map of R3 x P2 + L( P’), and this is known to be 
continuous since S’ x P2 is compact. (See [6] p. 49, prop. 3.9). 

Hence F 0 G is continuous in the Whitney topology. The set U of C” stable maps in 
Cm@’ x P2, f.( P2)) is open, hence (FOG)-‘U is open in Cm(S1, R3). It follows from the 
proposition that (Fo G)-‘(U) = A. 

$4. SINGULARITIES OF THE DUAL SURFACE 

If C = a(S’), a E A, we have the following correspondence between the singularities of the 
dual surface C* and the contact of planes in R3 with the curve C: 

Double points of C* +, Bitangent planes of C 

Triple points of C* +, Tritangent planes of C 

Cuspidal points of C* c, Osculating planes of C 

Swallowtail points of C* u Osculating planes of stalls of C 

Cuspidal/double points of C* ,+ Osculating/bitangent planes of C 

(Fig. 1.) 

$5. THE INDEX OF A SWALLOWTAIL OF C*. 

If C = a(S ‘), a E A, then C* is the boundary of a region R in ( P3)* defined as follows. If 
P $ C*, then P is transverse to C, so P n C has an even number of points. If P$ C* 
let n(P, C*) be one-half this number of intersection points, and let R = Closure 
(Pc(p3)*JP$C and n(P,C*) s 1 (mod 2)). 

Now suppose P is a swallowtail point of C*. We let n(P, C*) = x(S, n R), where S, is a 
small sphere in ( P3)* containing P and transverse to C*. (Here x is the Euler characteristic.) A 
neighbourhood of P in C* is homeomorphic to the cone on a figure eight, and n(P, C*) = 1 if 
R is inside the figure eight, n(P, C*) = 0 if R is outside the figure eight (Fig. 2). 

PROPOSITION 3. Let C = a(S), a E A, and let x be a stall of C with osculating plane P. Then 
n(x, C) =_ n(P, C*) (mod 2). 

Proof. By definition n(x, P) is congruent mod 2 to n(Q, C*), where Q # C* is a plane close 
to P such that Q does not intersect C near x. But for any Q $ C*, Q close to P, we have that Q 
intersects C near x in either, 0,2 or 4 points, with 0 or 4 corresponding to Q inside the figure 
eight cone and 2 corresponding to Q outside the figure eight cone. This follows from the local 
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topology of the map F,: C x P2 + f.( p2) at a swallowtail point x. For (u, k) E L( p2)\Fc(Z) 
near F,(x), F; 1 (u, k) has either 0,2, or 4 points near x, as illustrated in Fig. 2. (This can be 
checked using the local equation of a swallowtail singularity.) 

Now take Q e C *, close to P and from inside the figure eight cone, such that Q does not 
intersect C near x. Then, if the points inside the figure eight cone are in R we have that 

n(x, C) = n(Q, C*) E 1 = n(P, C*). 
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If the points inside the figure eight cone are not in R we have that 

n(x, C) 3 n(Q, C*) = 0 = n(P, C*). 

$6. COUNTING TRIPLE POINTS OF C’. 

Our theorem has been reduced to the following result. 

PROFQSITION 4. Let C = a(S), a E A. Let T *(C) be the number of triple points of C *, and let 
P,, . . :, P, be the swallowtail points of C*. Then 

T*(C) = c n(Pi, C*) (mod 2). 
i= 1 

Proof. Since a E A, the double locus of C* is a collection of closed curves and curve 
segments with endpoints at swallowtail points of C*. The above congruence will be obtained 
by traversing each of these curves and keeping track of the number of triple points of C* 
encountered. 

We first sketch the proof then proceed to provide the formal details which justify the 
construction. 

A closed curve in the double locus must pass through triple points of the surface an even 
number of times. Any such curve has a neighborhood consisting of the region inside a 
collection of spheres around triple points and cuspidal double points, and tubes joining these 
spheres, with all these elements chosen so that they intersect as nicely as possible (a 
“controlled system of tubular neighborhoods”, Fig. 3). Because the surface is orientable and 
the boundary of this neighborhood is orientable we can show that a curve on this boundary 
which follows the double curve will end up at its starting point after passing an even number 
of triple points. We then show that a curve in the double locus beginning at a swallowtail P 
and ending at another swallowtail Q will pass an even or an odd number of triple points 
depending on whether the stall indices at the endpoints are the same or different. The system 
of neighborhoods is chosen so that around every swallowtail we have a sphere meeting the 
surface in a figure eight. The orientability of the surface assures us that a curve on the 
neighborhood boundary which starts outside the figure eight at P will end up outside the 

figure eight at Q. The result follows from the fact that the index of points on this-nearby curve 
will change precisely when the curve passes a triple point. Combining the results for all parts 
of the double locus we obtain the desired congruence. 

We now provide the details for this argument. 
The stable map io F,: C x pz + ( P3)* admits a Thorn stratification [S], with the 

following stratification 9 in the target ( P3)*. The O-strata of .9 are the triple points, the 
cuspidal double points, and the swallowtail points of C*. The l-strata of4 are the open arcs 
of ordinary double points and ordinary cusp points of C *. The 2-strata comprise the smooth 
points of C*, and the 3-strata the rest of (P3)*. Let { TU},,., be a (controlled) system of tubular 
neighborhoods for 9 [S] [7]. By shrinking the tubes if necessary, we may assume that for 
each stratum U, the set SU = TU \ (0 \ U) is a smooth manifold, and SU is transverse to S, for 
all strata V c D. 

Recall that the singular locus C of io Fc is isomorphic to C x P’, with i 0 F,(Z) = C*, and 
that fc: YZ + ( I?~)* is the restriction of io F,. Let D c C* be the closure of the set of double 
points off,. Then D is the l-skeleton of9, and D can be uniquely expressed as a finite union of 
distinct connected Cm curves Di with the following properties: Each curve Di has as singular 
points only cusps, double points, triple points, and endpoints. The cusps of Di occur at 
cuspidal double points of C*. The double points and triple points of Di, as well as the 
intersection points of Di with Dj for i # j, occur at the triple points of C*. The endpoints of Di 
are the swallowtail points of C*. 

For each i, let Ti be the tubular neighborhood of Di in ( P3)*, i.e. the union of the given 
tubular neighborhoods of the strata comprising D;. Let Si be the boundary Of Ti. Then Si is a 
smooth surface with corners. (A corner of Si occurs where the boundary of a tubular 
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Fig. 3. 

neighborhood of a l-stratum intersects the boundary of a tubular neighborhood of an 
incident O-stratum.) The surface Si is orientable, since ( P3)* and hence Ti are orientable. The 
surfaces C * and Si intersect transversely. Let Ci be the curve C* n Si. The region R c ( P3)* 
(defined in section 5) intersects Si in a surface Ri with boundary Ci. 

Now we shall count the triple points of C * by constructing for each i a curve S: on Si which 
“follows” Di, and which crosses Ci near triple points of C*. 

First we consider the case when Di is a closed curve, i.e. no swallowtail points occur on Di. 
Let D I, = f; ’ (Di) c Z. Let di : S i -t Di be a C m parametrization of Di with only cusps, double 
points, and triple points as singularities. Consider the pull-back 

d; 
S - D; 

I I 

s 1 1 fc 
di 

S’- Di 

The mapfis a double cover; we will show below that it must be a trivial cover, so S is the 
disjoint union of two circles. Let e,: S 1 -+ E; be the restriction of d; to one of these circles, with 
E; = ei(S I). We wish to show that the number oft E S l such that d,(r) is a triple point of C* is 
even. 

Fix an orientation of X, and choose a normal vector field n to ei in C so that the tangent 
vector to ei followed by n gives the orientation of X. We will say that a curve eI obtained by 
pushing e, off itself along n lies to the left of e, in X. (The vector field n is not defined at cusps of 
ei, but this creates no problem in defining ei.) Using the stratification off,, we can construct 
such a curve e; with the property that Im (fc 0 e;) c Ti, andfc 0 e;(s) E Ci except on the closures 
of the tubular neighborhoods of the triple points of C *. If P is a triple point of C*, let SO, be 
the interior of Sp n Si in Si. We can modifyfco ei in Fp to obtain a curve si(t) inSi such that 6i 
and Ci are transverse in Sp, and si(t) n Ci n Sg # $9 if and only if di(r) is a triple point of C*. 
Fix an orientation of Si, and push di slightly to the left on Si to obtain the desired curve 8:. We 
can choose s;(t) so that it intersects Ci precisely when d,(t) is a triple point of C*, and these 
intersections are transverse (Fig. 4a, b). Now since 6; and Ci are closed curves on the oriented 
surface Si, the number of intersection points of S{ and Ci is indeed even. 

Suppose, however, that the double coverf: S -+ S’ constructed is nontrivial, so that S 
= S’, and dj: S’ + 0; with_&0 d; = di 01: Let di be constructed from d; as above, and let 8; be 
obtained by pushing b, to the left on Si. Choose t, ES’ such that di(to) is an ordinary double 
point of C*. Let F, be the circle fiber of Si over d,(ta). Then F, n Ci has four points, two of 
which, say x and y, are on the image of the curve &. Now the curve di bounds a region in Si, so 
8; either lies inside this region or outside it. But two points of Si, say x’ and y’, lie in F,, and 
they are separated by the points x and y, a contradiction. We conclude that f must be trivial. 

Next we consider the case when Di is an arc, with endpoints at swallowtails of C*. Then 
there are parametrizations di: [0, l] + Di and d;: [ - 1, l] + 0; with di( - 1) = d;(l), such 
thatfcodj(s) = d,( Is/). We wish to show that the number of r E [0, l] such that di(r) is a triple 
point of C* has the same parity as n(P, C*) + n(Q, C*), where P = d,(O) and Q = di(l) are the 
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Fig. 4. 

endpoints Of Di. First we recall the definition of n(P, C *). Let Spbe the sphere boundary of the 
tubular neighborhood of P. The curve C* n Sp is homeomorphic to a figure eight, and 
n(P, c*) = 1 if and only if the points inside this figure eight are in the region R. 

By the same method as above, we construct a closed curve &: [ - 1, l] -+ Si with Si(0) E Sp 
and Si( - 1) = Bi(l)E S,, such that 6,(s) EC, except on the boundaries of the tubular 
neighborhoods of the triple points and cuspidal double points on Di. (In particular, di 
coincides with Ci on Sp and on S,.) By pushing di to the right in Z instead of to the left, we 
obtain another closed curve q on Si disjoint from di. Let Ai be the region of Si such that dAi 
= Im di and Ai $ Imei. Let Bi be the region of Si such that dBi = Im ei and B,$ Im 6i. Let Ti 
= Ai u Bi. Then the points of Ii n Sp lie inside C* n Sp and the points of Ii n S, lie inside 
C* n S, (Fig. 5). 

We next construct as above an arc ai: [0, l] + Si by pushing S,l[O, l] to the left, with 
&(O)E SP,G;(l)trSQ, and such that s:(t) intersects Ci (transversely) precisely when d,(t) is a 
triple point of C *. Since 6: does not cross di or Ei, Im Si must lie either in Ii or in SJTi. 
Therefore S: (0) lies inside C* n Sp if and only if 6; (1) lies inside C* n S,. So 6: crosses Ci an 
even number of times if and only if n(P, C*) = n(Q, C*), as desired. 

Putting together the cases when Di has no endpoints and when Di has endpoints, we 

conclude that, since each triple point lies on 3 branches of D, 3T(C*) E i n(Pi, C* ), which 
i=l 

gives the stated result. 

Fig. 5. 
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47. RELATED RESULTS 

We can also show that the number of tritangent planes ofa surface in 3-space is congruent 
mod 2 to the number of cusps of the Gauss map, appropriately indexed. (The local geometry 
of a surface near a cusp of the Gauss map is described in [2].) 

The same topological technique gives a relation between the number of triple points and 
Whitney umbrella points (pinch points) of a stable map of a surface to a 3-manifold. 

It is interesting to compare our results for real space curves with R. Piene’s formulas for 
complex space curves [8, 443. For a generic curve in projective 3-space, she obtains the 
formula [S, p. 1161 

T= t+d(l,2)+y-tk,+2k1, 

where t is the number of tritangent planes, d(l,2) is the number of osculating bitangents, y is 
the number of flex bitangents, k, is the number of stalls, and k, is the number of flexes. On the 
other hand [8, p. 1131, 

T= iC(r, -4)(r, -3)(r, -2)-691, 
where r1 is the rank of the curve (or the degree of its dual surface) and g is the genus of the 
curve. For a generic real curve in R3 there are no flexes, d(l,2) is even, and the degree of the 
dual surface is even, so Piene’s formulas suggest that the number of tritangent planes should 
be congruent mod 2 to the number of stalls (ignoring the genus). However, the appearance of 
the nonlocal index n(x, C) of a stall is not predicted by her formulas. 
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