13 research outputs found

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Thermal Conversion of Unsolvated Mg(B<sub>3</sub>H<sub>8</sub>)<sub>2</sub> to BH<sub>4</sub><sup>–</sup> in the Presence of MgH<sub>2</sub>

    No full text
    In the search for energy storage materials, metal octahydrotriborates, M(B3H8)n, n=1,2, are promising candidates for applications such as stationary hydrogen storage and all solid-state batteries. Therefore, we studied the thermal conversion of unsolvated Mg(B3H8)2 to BH4-: as synthesized, and in the presence of MgH2. The conversion of our unsolvated Mg(B3H8)2 starts at ~100˚C and yields ~22 wt% of BH4- along with the formation of (closo-hydro)borates and volatile boranes. This loss of boron (B) is a sign of poor cyclability of the system. However, the addition of activated MgH2 to unsolvated Mg(B3H8)2 drastically increases the thermal conversion to 85-88wt% of BH4- while simultaneously decreasing the amounts of B-losses. Our results strongly indicate that the presence of activated MgH2 substantially decreases the formation of (closo-hydro)borates and provides the necessary H2 for the B3H8-to-BH4 conversion. This is the first report of a metal octahydrotriborate system to selectively convert to BH4- under moderate conditions of temperature (200 °C) in less than 1h, making the MgB3H8-MgH2 system very promising for energy storage applications

    PHENIX central arm tracking detectors

    No full text
    The PHENIX tracking system consists of Drift Chambers (DC), Pad Chambers (PC) and the Time Expansion Chamber (TEC). PC1/DC and PC2/TEC/PC3 form the inner and outer tracking units, respectively. These units link the track segments that transverse the RICH and extend to the EMCal. The DC measures charged particle trajectories in the r-phi direction to determine P-T of the particles and the invariant mass of particle pairs. The PCs perform 3D spatial point measurements for pattern recognition and longitudinal momentum reconstruction and provide spatial resolution of a few mm in both r-phi and z. The TEC tracks particles passing through the region between the RICH and the EMCal. The design and operational parameters of the detectors are presented and running experience during the first year of data taking with PHENIX is discussed. The observed spatial and momentum resolution is given which imposes a limitation on the identification and characterization of charged particles in various momentum ranges. (C) 2002 Published by Elsevier Science B.V

    Mobile Technology Trends and their Potential for Agricultural Development

    No full text

    Overview of Phenix results from the first RHIC run

    No full text

    Complex and liquid hydrides for energy storage

    Get PDF
    © 2016, Springer-Verlag Berlin Heidelberg.The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements
    corecore