15,106 research outputs found
Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing
Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report
Vulnerability of horticultural crop production to extreme weather events
The potential impact of future extreme weather events on horticultural crops was evaluated. A review was carried out of the sensitivities of a representative set of crops
to environmental challenges. It confirmed that a range of environmental factors are capable of causing a significant impact on production, either as yield or quality loss.
The most important of these were un-seasonal temperature, water shortage or excess,and storms. Future scenarios were produced by the LARS-WG1, a stochastic weather generator linked with UKCIP02 projections of future climate. For the analyses, 150 years of synthetic weather data were generated for baseline, 2020HI and 2050HI scenarios at defined locations. The output from the weather generator was used in case studies, either to estimate the frequency of a defined set of circumstances known to have impact on cropping, or as inputs to models of crop scheduling or pest phenology or survival. The analyses indicated that episodes of summer drought severe enough to interrupt the continuity of supply of salads and other vegetables will increase while the frequency of autumns with sufficient rainfall to restrict potato lifting will decrease. They also indicated that the scheduling of winter cauliflowers for continuity of supply will require the deployment of varieties with different temperature sensitivities from those in use currently. In the pest insect studies, the number of batches of Agrotis segetum (cutworm) larvae surviving to third instar increased with time, as did the potential number of generations of Plutella xylostella (diamond-back moth) in the growing season, across a range of locations. The study demonstrated the utility of high resolution scenarios in predicting the likelihood of specific weather patterns and their potential effect on horticultural production. Several limitations of the current scenarios and biological models were also identified
The azimuth structure of nuclear collisions -- I
We describe azimuth structure commonly associated with elliptic and directed
flow in the context of 2D angular autocorrelations for the purpose of precise
separation of so-called nonflow (mainly minijets) from flow. We extend the
Fourier-transform description of azimuth structure to include power spectra and
autocorrelations related by the Wiener-Khintchine theorem. We analyze several
examples of conventional flow analysis in that context and question the
relevance of reaction plane estimation to flow analysis. We introduce the 2D
angular autocorrelation with examples from data analysis and describe a
simulation exercise which demonstrates precise separation of flow and nonflow
using the 2D autocorrelation method. We show that an alternative correlation
measure based on Pearson's normalized covariance provides a more intuitive
measure of azimuth structure.Comment: 27 pages, 12 figure
Transverse Momentum Correlations in Relativistic Nuclear Collisions
From the correlation structure of transverse momentum in relativistic
nuclear collisions we observe for the first time temperature/velocity structure
resulting from low- partons. Our novel analysis technique does not invoke
an {\em a priori} jet hypothesis. autocorrelations derived from the scale
dependence of fluctuations reveal a complex parton dissipation process
in RHIC heavy ion collisions. We also observe structure which may result from
collective bulk-medium recoil in response to parton stopping.Comment: 10 pages, 10 figures, proceedings, MIT workshop on fluctuations and
correlations in relativistic nuclear collision
A Bibliography of Illinois Imprints (Book Review)
published or submitted for publicatio
The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis
Kepler-296 is a binary star system with two M-dwarf components separated by
0.2 arcsec. Five transiting planets have been confirmed to be associated with
the Kepler-296 system; given the evidence to date, however, the planets could
in principle orbit either star. This ambiguity has made it difficult to
constrain both the orbital and physical properties of the planets. Using both
statistical and analytical arguments, this paper shows that all five planets
are highly likely to orbit the primary star in this system. We performed a
Markov-Chain Monte Carlo simulation using a five transiting planet model,
leaving the stellar density and dilution with uniform priors. Using importance
sampling, we compared the model probabilities under the priors of the planets
orbiting either the brighter or the fainter component of the binary. A model
where the planets orbit the brighter component, Kepler-296A, is strongly
preferred by the data. Combined with our assertion that all five planets orbit
the same star, the two outer planets in the system, Kepler-296 Ae and
Kepler-296 Af, have radii of 1.53 +/- 0.26 and 1.80 +/- 0.31 R_earth,
respectively, and receive incident stellar fluxes of 1.40 +/- 0.23 and 0.62 +/-
0.10 times the incident flux the Earth receives from the Sun. This level of
irradiation places both planets within or close to the circumstellar habitable
zone of their parent star.Comment: Accepted for publication in Ap
Superconducting Films for Absorber-Coupled MKID Detectors for Sub-Millimeter and Far-Infrared Astronomy
We describe measurements of the properties, at dc, gigahertz, and terahertz frequencies, of thin (10 nm) aluminum films with 10 ohm/{rm square}$ normal state sheet resistance. Such films can be applied to construct microwave kinetic inductance detector arrays for submillimeter and far-infrared astronomical applications in which incident power excites quasiparticles directly in a superconducting resonator that is configured to present a matched-impedance to the high frequency radiation being detected. For films 10 nm thick, we report normal state sheet resistance, resistance-temperature curves for the superconducting transition, quality factor and kinetic inductance fraction for microwave resonators made from patterned films, and terahertz measurements of sheet impedance measured with a Fourier Transform Spectrometer. We compare properties with similar resonators made from niobium 600 nm thick
Expanded Sampling Across Ontogeny in <I>Deltasuchus motherali</I> (Neosuchia, Crocodyliformes)
A revised diagnosis of this species, describing the new material and discussing incidents of apparent ontogenetic variation across the sampled population. The results of the ensuing phylogenetic analyses both situate Deltasuchus within an endemic clade of Appalachian crocodyliforms, separate and diagnosable from goniopholidids and pholidosaurs. This title is also available as Open Access on Cambridge Core
Interaction of the oncoprotein transcription factor MYC with its chromatin cofactor WDR5 is essential for tumor maintenance.
The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC-WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt\u27s lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC-WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC-WDR5 inhibitors could be developed as anticancer agents
- …