127 research outputs found
Why do proteins use selenocysteine instead of cysteine?
Selenocysteine is present in a variety of proteins and catalyzes the oxidation of thiols to disulfides and the reduction of disulfides to thiols. Here, we compare the kinetic and thermodynamic properties of cysteine with its selenium-containing analogon, selenocysteine. Reactions of simple selenols at pH 7 are up to four orders of magnitude faster than their sulfur analogs, depending on reaction type. In redox-related proteins, the use of selenium instead of sulfur can be used to tune electrode, or redox, potentials. Selenocysteine could also have a protective effect in proteins because its one-electron oxidized product, the selanyl radical, is not oxidizing enough to modify or destroy proteins, whereas the cysteine-thiyl radical can do this very rapidl
Reduction of protein radicals by GSH and ascorbate: potential biological significance
The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05±0.05)×105M-1s-1, while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stres
Protein thiyl radical reactions and product formation: a kinetic simulation
Protein thiyl radicals are important intermediates generated in redox processes of thiols and disulfides. Thiyl radicals efficiently react with glutathione and ascorbate, and the common notion is that these reactions serve to eliminate thiyl radicals before they can enter potentially hazardous processes. However, over the past years increasing evidence has been provided for rather efficient intramolecular hydrogen transfer processes of thiyl radicals in proteins and peptides. Based on rate constants published for these processes, we have performed kinetic simulations of protein thiyl radical reactivity. Our simulations suggest that protein thiyl radicals enter intramolecular hydrogen transfer reactions to a significant extent even under physiologic conditions, i.e. in the presence of 30 μM oxygen, 1 mM ascorbate and 10 mM glutathione. At lower concentrations of ascorbate and glutathione, frequently observed when tissue is exposed to oxidative stress, the extent of irreversible protein thiyl radical-dependent protein modification increases
Iodide-photocatalyzed reduction of carbon dioxide to formic acid with thiols and hydrogen sulfide
The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO2 capture coupled with H2S removal may have been relevant as a prebiotic carbon dioxide fixation
Carbon-centered radicals add reversibly to histidine – implications
Carbon-centered radicals add to histidine in a very fast equilibration reaction.</p
Thiyl Radical Reaction with Thymine: Absolute Rate Constant for Hydrogen Abstraction and Comparison to Benzylic C−H Bonds
- …
