696 research outputs found

    Cholesterol, C-Reactive Protein, and Periodontitis: HMG-CoA-Reductase Inhibitors (Statins) as Effect Modifiers

    Get PDF
    Common risk factors of periodontitis and cardiovascular diseases fuel the debate on interrelationships between them. The aim is to prove whether statins may influence periodontal parameters by affecting either of these factors. Out of the 4,290 subjects of SHIP (Study of Health in Pomerania), we included subjects aged >30 years (219 with statins, 2937 without) and excluded edentulous. We determined periodontal measures, cholesterol fractions, and inflammation markers. Statin use and periodontal risk factors were assessed. Gingival plaque and periodontal attachment loss were associated with systemic LDL cholesterol (P < 0.001) and C-reactive protein CRP (P = 0.019) revealing interaction with statin use. When adjusted for age, sex, smoking, diabetes, education, and dental service, statins were identified as effect modifiers abolishing the relationship between attachment loss and LDL and between gingival plaque and LDL (interactions P < 0.001). No statin-related interaction was detected with increase in CRP. The interaction supports the view of inter-relationships between periodontal and systemic inflammatory mediators

    Periodontal complications of hyperglycemia/diabetes mellitus: Epidemiologic complexity and clinical challenge

    Full text link
    This report provides a comprehensive overview of the adverse effects of hyperglycemia on the periodontium. It combines data from literature reviews of original data from two large, population‐based epidemiologic studies with comprehensive periodontal health assessment. Emphasis is placed on the exploration of hitherto sparsely reported effects of prediabetes and poorly controlled (uncontrolled) diabetes, in contrast to the umbrella term “diabetes.” This stems from the realization that it is not simply having a diagnosis of diabetes that may adversely affect periodontal health. Rather, it is the level (severity) of hyperglycemia that is the determining factor, not the case definition of the diagnosis of diabetes or the type of diabetes in question. Importantly, based on existing evidence this paper also attempts to estimate the improvements in periodontal probing depth and clinical attachment level that can be expected upon successful nonsurgical periodontal treatment in people with chronic periodontitis, with and without diabetes, respectively. This exploration includes the implentation of new systematic reviews and meta‐analyses that allow comparison of such intervention outcomes between hyperglycemic and normoglycemic subjects. Based on both existing literature and original analyses of population‐based studies, we try to answer questions such as: Is there a glycated hemoglobin concentration threshold for periodontitis risk? Does short‐term periodontal probing depth reduction and clinical attachment level gain after scaling and root planing depend on glycemic control in type 2 diabetes? Are short‐term scaling and root planing outcomes in people with hyperglycemia/diabetes inferior to those in people without diabetes? Do periodontitis patients with diabetes benefit more from the use of adjuvant antibiotics with nonsurgical periodontal treatment than people without diabetes? Does hyperglycemia lead to greater tooth loss in patients in long‐term post‐periodontal treatment maintenance programs? Throughout this review, we compare our new findings with previous data and report whether the results of these new analyses corroborate, or are in discord with, similar scientific reports in the literature. We also explore the potential role of dental health‐care professionals in helping patients control the risk factors that are identical for periodontitis and diabetes. Finally, we suggest various topics that still need exploration in future research.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146293/1/prd12235.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146293/2/prd12235_am.pd

    Highly Refractory Peridotites on Macquarie Island and the Case for Anciently Depleted Domains in the Earth's Mantle

    Get PDF
    Macquarie Island (Southern Ocean) is a fragment of Miocene ocean crust and upper mantle formed at a slow-spreading ridge system, uplifted and currently exposed above sea-level. The crustal rocks on the island have unusually enriched compositions and the strong signature of an enriched source requires low overall degrees of melt depletion in the underlying mantle. Peridotites on the island, however, are highly refractory harzburgites that can be modeled as residues of >20-25% of near-fractional melting from which all the free clinopyroxene was melted out. The peridotites have some of the highest spinel Cr-numbers (0·40-0·49) and lowest orthopyroxene-core Al2O3 concentrations (2·7-3·0 wt %) reported so far for oceanic peridotites. The peridotites were subsequently modified by melt-rock reactions underneath the Miocene ridge system. The refractory character of the peridotites is inconsistent with the slow-spreading ridge setting as well as with the enriched character of the overlying crust, and must indicate a previous depletion event; the peridotites are not the source residue of the overlying ocean crust on Macquarie Island. Osmium isotopic compositions of peridotite samples are very unradiogenic (187Os/188Os = 0·1194-0·1229) compared with normal abyssal peridotites and indicate a long-lived rhenium depletion. Proterozoic rhenium-depletion ages indicate that these rocks have preserved a memory of an old mantle melting event. We argue that the Macquarie Island harzburgites are samples from an anciently depleted refractory mantle reservoir that may be globally important, but that is generally overlooked because of its sterility; that is, its inability to produce basalts. This reservoir may preserve key information about the history of the Earth's mantle as a whol

    Closed-system behaviour of the Re-Os isotope system recorded in primary and secondary platinum-group mineral assemblages : evidence from a mantle chromitite at Harold's Grave (Shetland ophiolite complex, Scotland)

    Get PDF
    This study evaluates in detail the mineral chemistry, wholerock and mineral separate Os-isotope compositions of distinct platinumgroup mineral (PGM) assemblages in an isolated chromitite pod at Harold's Grave which occurs in mantle tectonite in the Shetland Ophiolite Complex (SOC), Scotland. This was the first ophiolite sequence worldwide that was shown to contain ppm levels of all six platinum-group elements (PGE) in podiform chromitite, including the contrasting type localities found here and at Cliff. At Harold's Grave the primary PGM assemblage is composed mainly of laurite and/or Os-rich iridium and formed early together with chromite, whereas the secondary PGM assemblage dominated by laurite, Osrich laurite, irarsite, native osmium and Ru-bearing pentlandite is likely to reflect processes including in-situ serpentinization, alteration during emplacement and regional greenschist metamorphism. The osmium isotope data define a restricted range of 'unradiogenic' 187Os/188Os values for coexisting laurite and Os-rich alloy pairs from 'primary' PGM assemblage (0.12473-0.12488) and similar 'unradiogenic' 187Os/188Os values for both 'primary' and 'secondary' PGM assemblages (0.1242±0.0008 and 0.1245±0.0006, respectively), which closely match the bulk 187Os/188Os value of their host chromitite (0.1240±0.0006). The unprecedented isotopic similarity between primary or secondary PGM assemblages and chromitite we report suggests that the osmium isotope budget of chromitite is largely controlled by the contained laurite and Os-rich alloy. This demonstrates that closed system behaviour of the Re- Os isotope system is possible, even during complex postmagmatic hydrothermal and/or metamorphic events. The preserved mantle Os-isotope signatures provide further support for an Enstatite Chondrite Reservoir (ECR) model for the convective upper mantle and are consistent with origin of the complex as a Caledonian ophiolite formed in a suprasubduction zone setting shortly before obduction

    Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke

    Get PDF
    Objectives From previous data in animal models of cerebral ischemia, lipocalin-2 (LCN2), a protein related to neutrophil function and cellular iron homeostasis, is supposed to have a value as a biomarker in ischemic stroke patients. Therefore, we examined LCN2 expression in the ischemic brain in an animal model and measured plasma levels of LCN2 in ischemic stroke patients. Methods In the mouse model of transient middle cerebral artery occlusion (tMCAO), LCN2 expression in the brain was analyzed by immunohistochemistry and correlated to cellular nonheme iron deposition up to 42 days after tMCAO. In human stroke patients, plasma levels of LCN2 were determined one week after ischemic stroke. In addition to established predictive parameters such as age, National Institutes of Health Stroke Scale and thrombolytic therapy, LCN2 was included into linear logistic regression modeling to predict clinical outcome at 90 days after stroke. Results Immunohistochemistry revealed expression of LCN2 in the mouse brain already at one day following tMCAO, and the amount of LCN2 subsequently increased with a maximum at 2 weeks after tMCAO. Accumulation of cellular nonheme iron was detectable one week post tMCAO and continued to increase. In ischemic stroke patients, higher plasma levels of LCN2 were associated with a worse clinical outcome at 90 days and with the occurrence of post-stroke infections. Conclusions LCN2 is expressed in the ischemic brain after temporary experimental ischemia and paralleled by the accumulation of cellular nonheme iron. Plasma levels of LCN2 measured in patients one week after ischemic stroke contribute to the prediction of clinical outcome at 90 days and reflect the systemic response to post-stroke infections

    Micro-computed tomography, scanning electron microscopy and energy X-ray spectroscopy studies of facet joint degeneration : A comparison to clinical imaging

    Get PDF
    Segmental degeneration in the human lumbar spine affects both the intervertebral discs and facet joints. Facet joint degeneration not only affects the cartilage surface, but also alters the cellular properties of the cartilage tissue and the structure of the subchondral bone. The primary focus of this study is the investigation of these microstructural changes that are caused by facet joint degeneration. Microstructural analyses of degenerated facet joint samples, obtained from patients following operative lumbar interbody fusion, have not previously been extensively investigated. This study analyzes human facet joint samples from the inferior articular process using scanning electron microscopy, micro-computed tomography, and energy dispersive X-ray spectroscopy to evaluate parameters of interest in facet joint degeneration such as elemental composition, cartilage layer thickness and cell density, calcification zone thickness, subchondral bone portion, and trabecular bone porosity. These microstructural analyses demonstrate fragmentation, cracking, and destruction of the cartilage layer, a thickened calcification zone, localized calcification areas, and cell cluster formation as pathological manifestations of facet joint degeneration. The detailed description of these microstructural changes is critical for a comprehensive understanding of the pathology of facet joint degeneration, as well as the subsequent development and efficacy analysis of regenerative treatment strategies.Peer reviewe

    Clinical decision-making on spinal cord injury-associated pneumonia: a nationwide survey in Germany

    Get PDF
    Study design: Survey study. Objectives: Spinal cord injury (SCI)-associated pneumonia (SCI-AP) is associated with poor functional recovery and a major cause of death after SCI. Better tackling SCI-AP requires a common understanding on how SCI-AP is defined. This survey examines clinical algorithms relevant for diagnosis and treatment of SCI-AP. Setting: All departments for SCI-care in Germany. Methods: The clinical decision-making on SCI-AP and the utility of the Centers for Disease Control and Prevention (CDC) criteria for diagnosis of ‘clinically defined pneumonia’ were assessed by means of a standardized questionnaire including eight case vignettes of suspected SCI-AP. The diagnostic decisions based on the case information were analysed using classification and regression trees (CART). Results: The majority of responding departments were aware of the CDC-criteria (88%). In the clinical vignettes, 38–81% of the departments diagnosed SCI-AP in accordance with the CDC-criteria and 7–41% diagnosed SCI-AP in deviation from the CDC-criteria. The diagnostic agreement was not associated with the availability of standard operating procedures for SCI-AP management in the departments. CART analysis identified radiological findings, fever, and worsened gas exchange as most important for the decision on SCI-AP. Frequently requested supplementary diagnostics were microbiological analyses, C-reactive protein, and procalcitonin. For empirical antibiotic therapy, the departments used (acyl-)aminopenicillins/β-lactamase inhibitors, cephalosporins, or combinations of (acyl-)aminopenicillins/β-lactamase inhibitors with fluoroquinolones or carbapenems. Conclusions: This survey reveals a diagnostic ambiguity regarding SCI-AP despite the awareness of CDC-criteria and established SOPs. Heterogeneous clinical practice is encouraging the development of disease-specific guidelines for diagnosis and management of SCI-AP

    Future renewable energy targets in the EU: Impacts on the German transport

    Get PDF
    The transport sector is at the center of discussions on accelerating the energy transition due to its still increasing contribution to greenhouse gas emissions worldwide; therefore, the EU has set binding targets for the use of renewable energy in transport through the Renewable Energy Directive. To analyze the economic impact of these targets, we developed an optimization model that considers bio- and electricity-based fuel options, various transport sectors, and future policy requirements. Our study of the German transport sector found that imported alternative fuels play a key role in reducing fossil fuel usage. We also identify two technological and managerial obstacles: policymakers need to prioritize the rapid electrification of vehicles in the near future; and in the distant future, more attention is needed in research for new technologies in commercial transport. Although our findings are tailored to Germany, the employed approach can be transferred to other models and countries
    corecore