9,208 research outputs found

    Isospectral But Physically Distinct: Modular Symmetries and their Implications for Carbon Nanotori

    Full text link
    Recently there has been considerable interest in the properties of carbon nanotori. Such nanotori can be parametrized according to their radii, their chiralities, and the twists that occur upon joining opposite ends of the nanotubes from which they are derived. In this paper, however, we demonstrate that many physically distinct nanotori with wildly different parameters nevertheless share identical band structures, energy spectra, and electrical conductivities. This occurs as a result of certain geometric symmetries known as modular symmetries which are direct consequences of the properties of the compactified graphene sheet. Using these symmetries, we show that there is a dramatic reduction in the number of spectrally distinct carbon nanotori compared with the number of physically distinct carbon nanotori. The existence of these modular symmetries also allows us to demonstrate that many statements in the literature concerning the electronic properties of nanotori are incomplete because they fail to respect the spectral equivalences that follow from these symmetries. We also find that as a result of these modular symmetries, the fraction of spectrally distinct nanotori which are metallic is approximately three times greater than would naively be expected on the basis of standard results in the literature. Finally, we demonstrate that these modular symmetries also extend to cases in which our carbon nanotori enclose non-zero magnetic fluxes.Comment: 12 pages, ReVTeX, 6 figures, 1 table. Replaced to match published versio

    Results of the 1986 NASA/FAA/DFVLR main rotor test entry in the German-Dutch wind tunnel (DNW)

    Get PDF
    An acoustics test of a 40%-scale MBB BO-105 helicopter main rotor was conducted in the Deutsch-Niederlandischer Windkanal (DNW). The research, directed by NASA Langley Research Center, concentrated on the generation and radiation of broadband noise and impulsive blade-vortex interaction (BVI) noise over ranges of pertinent rotor operational envelopes. Both the broadband and BVI experimental phases are reviewed, along with highlights of major technical results. For the broadband portion, significant advancement is the demonstration of the accuracy of prediction methods being developed for broadband self noise, due to boundary layer turbulence. Another key result is the discovery of rotor blade-wake interaction (BWI) as an important contributor to mid frequency noise. Also the DNW data are used to determine for full scale helicopters the relative importance of the different discrete and broadband noise sources. For the BVI test portion, a comprehensive data base documents the BVI impulsive noise character and directionality as functions of rotor flight conditions. The directional mapping of BVI noise emitted from the advancing side as well as the retreating side of the rotor constitutes a major advancement in the understanding of this dominant discrete mechanism

    Biodiversity's big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean

    Get PDF
    Background: Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean - the largest biome on Earth - is chronically under-represented in global databases of marine biodiversity. Methodology/Principal Findings: We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented. Conclusions/Significance: The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem

    The Early Promise of TBRI Implementation in Schools

    Get PDF
    The program known as Trust Based Relational InterventionĀ® (TBRIĀ®) began as an exploration into the detrimental behaviors of foster and adopted children placed in homes with unsuspecting caregivers who assumed their living environment would result in positive results rather than fear based emotions and behaviors. The researchers at the Karyn Purvis Institute of Child Development (KPICD) at Texas Christian University held summer camps for adopted children and through that work developed an intervention to meet the needs of children who had experienced trauma. KPICD identifies these young people as ā€œchildren from hard placesā€ (Purvis & Cross, 2005). Copeland et al (2007) reported that an estimated 68% of children in the United States have experienced some sort of trauma. This astounding statistic holds great meaning for teachers and administrators, because these children from hard places routinely manifest aggressive and undesired behaviors due to an altering of their physiology. The literature on TBRIĀ® at this point mostly has chronicled success with families, group homes and summer camps (McKenzie, Purvis, & Cross, 2014; Howard, Parris, Neilson, Lusk, Bush, Purvis & Cross, 2014; Purvis & Cross, 2006). TBRIĀ® has only recently been implemented in school settings. This report provides an overview of the impacts of trauma, trauma related work in schools, and the four articles published to this point related to the use of TBRIĀ® in schools

    Clinical Trial of the Outpatient Management of Pyelonephritis in Pregnancy

    Get PDF
    Objective: This study was designed to determine whether outpatient treatment of pyelonephritis in pregnancy can reduce costs without compromising safety or efficacy

    Deconvolution methods and systems for the mapping of acoustic sources from phased microphone arrays

    Get PDF
    A method and system for mapping acoustic sources determined from a phased microphone array. A plurality of microphones are arranged in an optimized grid pattern including a plurality of grid locations thereof. A linear configuration of N equations and N unknowns can be formed by accounting for a reciprocal influence of one or more beamforming characteristics thereof at varying grid locations among the plurality of grid locations. A full-rank equation derived from the linear configuration of N equations and N unknowns can then be iteratively determined. A full-rank can be attained by the solution requirement of the positivity constraint equivalent to the physical assumption of statically independent noise sources at each N location. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with the phased microphone array in order to compile an output presentation thereof, thereby removing the beamforming characteristics from the resulting output presentation

    Noise Spectra and Directivity For a Scale-Model Landing Gear

    Get PDF
    An extensive experimental study has been conducted to acquire detailed noise spectra and directivity data for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. The measurements were conducted in the NASA Langley Quiet Flow Facility using a 41-microphone directional array system positioned at a range of polar and azimuthal observer angles with respect to the model. DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) array processing as well as straightforward individual microphone processing were employed to compile unique flyover and sideline directivity databases for a range of freestream Mach numbers (0.11 - 0.17) covering typical approach conditions. Comprehensive corrections were applied to the test data to account for shear layer ray path and amplitude variations. This allowed proper beamforming at different measurement orientations, as well as directivity presentation in free-field emission coordinates. Four different configurations of the landing gear were tested: a baseline configuration with and without an attached side door, and a noise reduction concept "toboggan" truck fairing with and without side door. DAMAS noise source distributions were determined. Spectral analyses demonstrated that individual microphones could establish model spectra. This finding permitted the determination of unique, spatially-detailed directivity contours of spectral band levels over a hemispherical surface. Spectral scaling for the baseline model confirmed that the acoustic intensity scaled with the expected sixth-power of the Mach number. Finally, comparison of spectra and directivity between the baseline gear and the gear with an attached toboggan indicated that the toboggan fairing may be of some value in reducing gear noise over particular frequency ranges
    • ā€¦
    corecore