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Abstract

Background: Understanding the distribution of marine biodiversity is a crucial first step towards the effective and
sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to
assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of
particular marine regions. In particular, the deep pelagic ocean – the largest biome on Earth – is chronically under-
represented in global databases of marine biodiversity.

Methodology/Principal Findings: We use data from the Ocean Biogeographic Information System to plot the position in
the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate
this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the
ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea
bed. Midwater biodiversity is drastically under-represented.

Conclusions/Significance: The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity’s big
wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the
provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is
a pressing need to increase our knowledge of Earth’s largest ecosystem.
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Introduction

The tragedy of studying biodiversity during an extinction crisis

is that we are losing our subject matter faster than we are able to

describe it [1]. This is especially true in the marine environment,

where the need to value and conserve taxa and habitats that we

know little about has been termed a paradox of marine

conservation [2]. Recent efforts by international networks such

as the Marine Biodiversity and Ecosystem Functioning EU

Network of Excellence (www.marbef.org) and the Census of

Marine Life (www.coml.org) have substantially advanced our

knowledge of the marine diversity of specific regions [3,4] and

habitats [5], in large part by harnessing the power of integrated

databases [6]. As well as highlighting what we know about marine

biodiversity, however, such databases also allow us to quantify

what we do not know. For instance, global synthetic analyses have

revealed that even for the best known marine taxa, regional

inventories remain worryingly incomplete [7]. Spatial biases are

also apparent. In particular, the deep pelagic ocean is revealed as

biodiversity’s big wet secret.

The marine pelagic environment is the open oceans and seas,

away from the coasts and above the sea bed; and the deep pelagic

ocean is typically defined as that part of the water column deeper

than 200m. It constitutes a vast biovolume of space in which

organisms can exist – by far the largest on Earth at over a billion

km3 [8-11]. We know that this vast realm and the organisms living

in it provide globally important ecosystem services [11], including

the support of fisheries, the provision of a range of natural

products of potential use in medicine and other applications, as

well as the regulation of climate and ocean chemistry through the

capture and storage of atmospheric carbon and the production of

marine carbonate. But, the limits of our knowledge of this system

are continually exposed by the regular discovery of new clades of

often large, active and conspicuous organisms [12] whenever

surveys are undertaken. Even a charismatic, widely distributed and

very large species, the megamouth shark Megachasma pelagios, was

not discovered until 1976, and has since been recorded so rarely

that each individual specimen has become well known [13].

Although it is generally recognised that our knowledge of the

deep pelagic ocean is inadequate [9,11], it is useful to understand

PLoS ONE | www.plosone.org 1 August 2010 | Volume 5 | Issue 8 | e10223



the extent to which this is unusual compared with other regions of

the marine environment. Here, we address this question using the

most extensive compilation in existence of the spatial distribution

of marine taxa. We estimate the location in the water column of

c.7 million georeferenced records of marine organisms recorded in

the Ocean Biogeographic Information System to provide a

graphical summary of the three dimensional distribution of

recorded global marine biodiversity.

Methods

The Ocean Biogeographic Information System
The objective of OBIS, the Ocean Biogeographic Information

System, is to mobilize, integrate and quality control raw

biogeography data from many different sources, and to make

the resulting data compilation freely and openly available through

its international portal (http://www.iobis.org) and other suitable

channels [14]. OBIS was created as the data integration

component of the Census of Marine Life [15,16], but also holds

data originating from its 14 Regional OBIS Nodes, from Thematic

Nodes such as FishBase, ICoMM or OBIS SEAMAP, and from

independent providers. At present, OBIS makes available through

its portal data from well over 700 individual data sets, and has

more than 22 million records (a species at a location). It is the

largest primary provider of marine biogeographical information,

and one of the main providers of data to the Global Biodiversity

Information Facility (GBIF). In June 2009, OBIS was adopted by

the Intergovernmental Oceanographic Commission as one of its

activities under its International Oceanographic Data and

Information Exchange programme. Although there are known

issues in OBIS with regards to taxonomic completeness,

geographical biases, and biogeographic accuracy [7,17], it remains

the most complete and comprehensive data repository in existence

on the distribution of marine taxa.

Data extraction and processing
We extracted all records from OBIS for which sample depth (m)

was recorded as well as the latitude and longitude of the sampling

event. We used the sample latitude and longitude to determine the

depth of the sea floor (bottom depth, m) at that location using

ETOPO1 [18]. ETOPO1 is a 1 arc-minute global relief model of

Earth’s surface including ocean bathymetry, built from numerous

global and regional data sets, and available from http://www.

ngdc.noaa.gov/mgg/global/global.html. Together, sample depth

and bottom depth describe the position in the water column of

each record.

Prior to analysis, we removed 14 sample depths and 1 bottom

depth that were negative (most likely intertidal records). Sample

depth occasionally exceeded bottom depth (for 7% records),

generally by #20m but occasionally by .100m. We make the

single reasonable assumption that in all such cases, samples were

taken from the sea bed. The discrepancy then either arises from

an inaccurate measurement of the depth at which the sample was

taken, or due to the geographically less precise estimates of

bottom depth (averaged over a grid with a resolution of 1 arc-

minute, i.e. approximately 1 nautical mile at the equator)

compared to the point measurements of sample depth. Because

we cannot distinguish these two possibilities, in all cases we

assume the sample depth is correct, and set the bottom depth

equal to the sample depth. This has no qualitative bearing on our

conclusions. Summing the number of records for each unique

combination of bottom depth and sample depth results in a

working dataset of 6987676 individual records sampled from

172012 unique locations in three-dimensional (latitude, longitude,

sample depth) space. Records were drawn from depths ranging

from 0—10670m, encompassing most of depth range of the

global oceans.

Data Analysis
We first plot the total number of OBIS records obtained from

each distinct bottom depth to provide a global picture of the

distribution of recorded marine biodiversity in regions of the ocean

of differing depths. Of course, different bottom depths are not

equally distributed in the marine environment, and so we next

divide the global oceans into five well-recognised zones, based on

bottom depth (Table 1). We then used a global sea floor

topography [19] to determine the proportional area of the oceans

occurring in each zone. For example, the continental shelf

(,200m) accounts for around 8.7% of the area of the oceans,

whereas the abyssal plain covers almost 50% of the ocean area

(Table 1), and is, by surface area, the largest habitat on Earth [8].

Plotting the proportion of OBIS records originating from each

zone against the proportional area of that zone shows which areas

of the ocean are proportionately under- or over-represented within

OBIS.

We next incorporate information on the position within the

water column from which each record was sampled (sample

depth) to create a three dimensional picture of recorded marine

biodiversity. To add finer resolution to this picture, we further

stratified these broad depth zones described in Table 1. Surface

waters (0—200m) were divided into 50m strata, waters between

200 and 1000m deep into 100m strata, waters from 1000 to

Table 1. Depth zones of the ocean, with the percentage of the global oceans occurring within each zone (estimated from data
described in Ref. 17).

Depth Zone Percentage of Ocean Area Cumulative Percentage Depth resolution

0—200m A. Continental Shelf 8.7 8.7 50ma

200—1000m B. Continental Slope / Mesopelagic 5.8 14.5 100m

1000—4000m C. Continental Slope / Bathypelagic 36.3 50.8 200m

4000—6000m D. Abyssal Plain 48.6 99.4 200m

.6000m E. Hadal Zone 0.6 100 1000m

aSurface waters to 200m deep were subdivided into 50m strata for global analyses, but into 10m strata for analyses of the Continental Shelf and Mesopelagic
Continental Slope.
The letters (A-E) used for each depth zone match those used in Figures 2 and 3. Depth resolution refers to the subdivision of the water column to each depth zone used
in subsequent analyses.
doi:10.1371/journal.pone.0010223.t001
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6000m deep into 200m strata, and waters over 6000m deep into

1000m strata. So, for example, the water column above a bottom

depth of 900–1000m was subdivided into 50m strata to a depth of

200m, and 100m strata thereafter. We then populated this matrix

of bottom depth x sample depth with the total number of OBIS

records occurring in each of the 903 cells in which sample depth

# bottom depth. Different cells within this matrix represent

different volumes of ocean. For instance, a 50m depth interval

over the abyssal plain represents more volume than the same

division over the continental shelf, because the former habitat has

a much larger surface area (Table 1). We therefore divided the

total number of records in each cell by the relative volume of that

cell, to give a standard scale throughout the water column and

across all bottom depths of records per (arbitrary) unit water

volume. Finally, we log10 transformed this standardised record

number, before plotting using the image function in the statistical

package R 2.9.2 [20]. To provide a more detailed view of

shallower waters, we re-did this analysis with a finer depth

resolution of 10m for water ,200m deep over bottom depths

over 0—1000m. The R code used for all anlyses and figures is

available in Appendix S1.

The resulting figure reflects both general trends for the total

number of OBIS records to vary with bottom depth, as well any

trend for the distribution of sampling effort to vary through the

water column. To show more clearly how the number of records

varies through the water column, regardless of bottom depth, we

re-calibrated the sample depth x bottom depth matrix so that

each column summed to 1, allowing us to visualise separately for

each bottom depth the proportion of records occurring at each

sample depth. We use this to calculate for each of the five ocean

zones defined in Table 1 the proportion of records from

midwater. We define midwater for depths #200m as all records

except those within 10m of the surface or of the sea bed; for

depths .200m, we exclude records within 100m of the surface

and within 100m, 200m or 1000m of the seabed respectively for

the mesopelagic zone, bathypelagic zone and abyssal plain, and

hadal zone.

Results

The majority of our knowledge of marine biodiversity is derived

from samples drawn from shallow seas: the number of records in

OBIS declines precipitously with increasing bottom depth

(Figure 1A). Areas of the ocean with a relatively shallow bottom

(,200m) typically have thousands of associated records, whereas

the deep oceans (.6000m) generally have ,10 records. The

lowess smooth in Figure 1A indicates that the decline in record

numbers is steepest in the range 0—1000m, and again around

5000—6000m. In part this may be related to different depths of

ocean having different areas. For instance, the low numbers of

records in the hadal zone may be due to the fact that this zone

constitutes a very small proportion of the total area of the ocean

(Table 1). By plotting the proportion of all records occurring

within each of the five ocean regions described in Table 1 against

the proportion of ocean area that region encompasses (Figure 1B),

the simultaneous effects of proportional area and number of

records can be untangled. Thus, although the hadal zone has

about the number of records expected, given its tiny area, other

zones are either highly under-or over-represented. For instance,

.50% of the OBIS records come from the continental shelf,

which constitutes ,10% of the ocean, whereas ,10% of records

are from the Abyssal Plain (4000—6000m), which constitutes c.

50% of the ocean area (Figure 1B).

The global distribution through the water column of recorded

marine biodiversity is shown in Figure 2. Even on the logarithmic

scale of number of records, the dominance of shallower waters

within the OBIS database is clear. It is also clear, both throughout

the oceans and over the continental shelf and slope, that most

records have come from a narrow band of water at the ocean

surface, or from the sea bed. The blue area throughout large parts

of the deep pelagic ocean in particular reflects the paucity of

records from this habitat. When we consider that each cell of

200m depth over the abyssal plain represents a volume of c. 3.5

million km3, the immense volume of water from which biological

records are essentially absent becomes starkly apparent.

Figure 1. The depth distribution of OBIS records of global marine biodiversity. A. Number of OBIS records against ocean depth (grey
symbols); the general trend is illustrated with a lowess smooth (solid line). Horizontal dashed lines indicate the divisions into regions A-E defined by
depth at 200, 1000, 4000 and 6000m (see Table 1). B. The proportion of all OBIS records occurring in the different depth zones identified in Table 1,
against the proportion of the global ocean that occurs at those depths. The 1:1 line identifies those areas of the ocean with proportionately more
(points above the line) or fewer (points below the line) records than expected given their area. This gives a conservative view of under- and over-
representation based on the volume of each habitat.
doi:10.1371/journal.pone.0010223.g001
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The general lack of pelagic records is shown more clearly by

considering the proportion of records at each position in the water

column separately for each bottom depth (see Figure S1). More

generally, midwater diversity is under-represented at all depths: in

no zone of the ocean do midwater records make up more than

50% of all records (Figure 3). However, this pattern is especially

marked in the deep sea: there is a significant negative correlation

between bottom depth and the proportion of midwater records

(Spearman’s rank correlation, rs= -0.66, d.f. = 54, P,0.0001).

Discussion

Our results clearly show that the deep oceans are vastly under-

represented in OBIS, the world’s largest provider of information

on the distribution of marine species. More than this, however, we

have also shown that midwater habitats throughout the global

oceans are under-recorded relative to surface waters and the sea

bed. Taken together, this shows that the least well recorded region

of the marine environment is the largest by volume: the deep

pelagic ocean.

There are two possible explanations for this: either the deep

pelagic ocean is especially low in biomass, or it has been especially

under-sampled (or some combination of the two). Historically, the

first of these possibilities has been espoused. For instance, Charles

Wyville Thomson, leader of the Challenger Expedition in the

1870s which effectively launched the discipline of deep sea biology

[11], believed that ‘the fauna of deep water is confined primarily to

two belts, one at and near the surface and the other on and near

the bottom; leaving an intermediate zone [i.e., the deep pelagic] in

which larger animals… are nearly or entirely absent’ (quoted in

Ref. 9). More recent evidence suggests, however, that it is under

sampling and net avoidance rather than a lack of organisms that

generate the patterns we have observed.

However, new technologies have dramatically altered percep-

tions of the deep pelagic ecosystem [10,21], suggesting that with

past techniques, even high sampling effort may not have resulted

in correspondingly high numbers of biological specimens being

collected. The ability to view animals in situ means that the

diversity of organisms not captured by traditional sampling

methods, such as the gelatinous fauna that constitutes up to a

quarter of pelagic biomass [10] is now better understood.

Importantly, their abundance is now known to be much higher

than most deep-sea biologists expected [10]. For instance, the

recently discovered new clade of large, active deep sea annelids

Figure 2. Global distribution within the water column of recorded marine biodiversity. The horizontal axis splits the oceans into five
zones on the basis of depth (see Table 1), with the width of each zone on this axis proportional to its global surface area. The vertical axis is ocean
depth, on a linear scale. This means that area on the graph is proportional to volume of ocean. For instance, in the deep sea each cell of 200m depth
represents c. 3.56106 km3 (see cell drawn separately for scale). The number of records in each cell (each unique combination of sample and bottom
depth, following the scheme in Table 1) is standardised to the volume of water represented by that cell, and then log10-transformed. The inset shows
in greater detail the continental shelf and slope, where the majority of records are found.
doi:10.1371/journal.pone.0010223.g002
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(including holopelagic species) occur at high biomass [12]. Thus,

the deep pelagic appears to conform to dictum that the more you

survey, the more you find, as witnessed recently in other marine

habitats including fish in the hadal zone [22] and microbes in

surface waters [23,24]. Such findings have led to estimates of a

million undescribed species in the deep pelagic [10] and the

proposal that ‘within this vast midwater habitat are the planet’s

largest animal communities… These animals probably outnumber

all others on Earth’ (Ref. 10:848). Clearly, there is much work still

to be done before we can draw conclusions regarding the depth

distribution of actual marine biodiversity from databases of recorded

marine biodiversity.

Increasing our understanding of these communities is important

for a number of reasons. First are the ecosystem services they

provide, for instance supporting global fisheries, climate regula-

tion, and bioprospecting [11]. In addition, they have considerable

potential as a model system for testing biogeographic hypotheses,

such as large-scale gradients in diversity. The deep pelagic

environment is spatially homogeneous and has been very stable

over time, with little in the way of seasonal and latitudinal

variability [10], and yet latitudinal gradients appear to exist in the

diversity of at least some deep pelagic taxa [8]. Might this provide

a means to tease apart the confounding effects of the environment,

geometric constraints, and species tolerances in explaining

biogeographic patterns [25,26]? More generally, it may prove

easier to unravel the multiple drivers of change in marine

ecosystems, including historical human influences and future

climate change, by studying those habitats that have been least

affected to date – the mid-ocean, mid-water environment – before

transferring this understanding back into more heavily disturbed

coastal and benthic systems [27].

Finally, even if pelagic ecosystems remain less impacted than

coastal regions, there is increasing concern that human activities

including fishing, pollution and climate change have already had

substantial effects, and that these pressures are only likely to

increase in future [11,28-30]. Although some conservation

measures, in particular the establishment of pelagic marine

protected areas, may be possible in the absence of detailed

biological information [28], clearly an increased understanding of

the temporal and spatial dynamics of pelagic organisms will

improve their effectiveness. We hope that exposing biodiversity’s

big wet secret will stimulate further exploration of Earth’s biggest

ecosystem.

Supporting Information

Appendix S1 R code used for data processing and production of

all figures.

Figure 3. The proportion of recorded marine biodiversity originating from the midwater pelagic ecosystem. The ocean is split into the
depth zones defined in Table 1. Midwater is defined as all of the water column except the 10m nearest the surface or the 10m (for the continental
shelf) or 100m (for the mesopelagic continental slope) above the sea bed, and for the other ocean zones as the water column excluding the 100m
nearest the surface and the 200m (for the bathypelagic zone and the abyssal plain) or 1000m (for the hadal zone) above the sea bed. For each zone,
the plot shows the median, interquartile range and total range of observed proportions. The shallowest two depths (0—10m and 10—20m) are
excluded, as there is no midwater according to our definition.
doi:10.1371/journal.pone.0010223.g003
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Found at: doi:10.1371/journal.pone.0010223.s001 (0.02 MB

TXT)

Figure S1 Global distribution of recorded marine biodiversity

expressed as the proportion of OBIS records occurring at each

position in the water column over each bottom depth. Only those

cells (unique combinations of sample and bottom depth, following

the scheme in Table 1) contributing more than 1% of records from

a given bottom depth are coloured. To provide an alternative scale

to Figure 2, where the size of each cell represents the volume of

water it contains, here we transform both the vertical depth axis (d)

and the horizontal area axis (a) (d9=d2/3, a9= !a). This better

shows the relatively high number of records in surface waters, as

well as patterns in the smaller depth zones (e.g., continental shelf,

hadal zone).

Found at: doi:10.1371/journal.pone.0010223.s002 (0.17 MB

PDF)
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