1,774 research outputs found

    Potential utility of renal functional reserve testing in clinical nephrology

    Get PDF
    PURPOSE OF REVIEW: The aim of this review is to discuss the concept of renal functional reserve (RFR) and its potential relevance in clinical practice. RECENT FINDINGS: The RFR is a measure of the change in glomerular filtration rate (GFR) from baseline to a peak value when the kidney is stimulated to increase its function. This concept has a strong physiologic basis in nephrology and the presence, magnitude or absence of RFR capacity may have prognostic significance in many clinical scenarios where individuals are at risk of hyperfiltration or kidney dysfunction. Unlike in other medical specialties, where organ reserve function is reliably measurable and used routinely, measurement of RFR in nephrology has not been integrated into clinical care. Methodologic challenges including standardization of methods to stimulate GFR and the ability of measures of GFR to discriminate acute dynamic changes in GFR upon kidney stimulation have hampered the robustness and use of RFR measurements in research and clinical care. SUMMARY: Given the emergence of many new disease-modifying therapies in nephrology, it is imperative that we move forward and develop more robust tools to further our understanding of kidney physiology and pathophysiology, such as the RFR, which should be integrated into research and clinical care to support optimal personalization of therapeutic kidney care strategies

    The tibio-femoral joint line : what is the biomechanical and clinical effect of surgical modifications?

    Get PDF
    status: publishe

    Deformable microsystem for in situ cure degree monitoring of GFRP(Glass Fibre Reinforced Plastic)

    Get PDF
    Fibre Reinforced Polymer (FRP) is becoming a valid alternative to many traditional heavy metal industries because of its high specific stiffness over the more classical construction metals. Recent trend of more complex geometry of composites is causing increasing difficulty in composite manufacturing. A method to optimize the manufacturing process is thus imposed to ensure and improve the quality of manufactured parts. Because of the irregular 3D shapes of the composites, traditional flat sensor system is becoming unfavorable and nonpractical for monitoring purpose. In this work, the current development status of a deformable microsystem for in situ cure degree monitoring of a glass fibre reinforced plastic is presented. To accommodate the non-flat shape of the composites, the proposal is to interconnect non-deformable functional island, which contains the capacitive sensor for cure degree monitoring, with meander-shaped deformable interconnections. The developed sensor system is able to withstand the manufacturing process where change of pressure and internal strain, thus force exerted on the sensor system, is involved

    Non-destructive evaluation of an infusion process using capacitive sensing technique

    Get PDF
    In this study, a capacitive sensing based non-destructive evaluation technique is applied to a vacuum assisted resin infusion process for the fabrication of glass fibre reinforced composites, as such different steps of the fabrication process (the injection of resin, the curing and the post curing) can be better understood to increase the quality of the fabricated part and reduce the fabrication costs. An interdigital coplanar capacitive sensor was designed, fabricated, and embedded in the glass fibre reinforced composites. Experimental data clearly shows different stages of the resin infusion process: wetting of the glass fibres marked by rapid increase of capacitance; domination of ionic conduction at the early stage of the cure when the resin is still in a liquid state; the vitrification point, indicating a transition of the resin from a gelly state to a glassy state, marked by the relatively big decrease in capacitance; further polymerization during post-curing, marked by a peak in capacitance at the beginning of post-curing cycle, and finally the completion of the cure marked by the saturation of capacitance to a final value. The different phenomena observed during the experiment can be used as a tool for in situ on-line monitoring of composites cure

    Biceps Femoris Compensates for Semitendinosus After Anterior Cruciate Ligament Reconstruction With a Hamstring Autograft: A Muscle Functional Magnetic Resonance Imaging Study in Male Soccer Players

    Get PDF
    Background: Rates of reinjury, return to play (RTP) at the preinjury level, and hamstring strain injuries in male soccer players after anterior cruciate ligament reconstruction (ACLR) remain unsatisfactory, due to multifactorial causes. Recent insights on intramuscular hamstring coordination revealed the semitendinosus (ST) to be of crucial importance for hamstring functioning, especially during heavy eccentric hamstring loading. Scientific evidence on the consequences of ST tendon harvest for ACLR is scarce and inconsistent. This study intended to investigate the repercussions of ST harvest for ACLR on hamstring muscle function. Hypothesis: Harvest of the ST tendon for ACLR was expected to have a significant influence on hamstring muscle activation patterns during eccentric exercises, evaluated at RTP in a population of male soccer athletes. Study Design: Controlled laboratory study. Methods: A total of 30 male soccer players with a history of ACLR who were cleared for RTP and 30 healthy controls were allocated to this study during the 2018-2019 soccer season. The influence of ACLR on hamstring muscle activation patterns was assessed by comparing the change in T2 relaxation times [ΔT2 (%) = [Formula: see text]] of the hamstring muscle tissue before and after an eccentric hamstring loading task between athletes with and without a recent history of ACLR through use of muscle functional magnetic resonance imaging, induced by an eccentric hamstring loading task between scans. Results: Significantly higher exercise-related activity was observed in the biceps femoris (BF) of athletes after ACLR compared with uninjured control athletes (13.92% vs 8.48%; P = .003), whereas the ST had significantly lower activity (19.97% vs 25.32%; P = .049). Significant differences were also established in a within-group comparison of the operated versus the contralateral leg in the ACLR group (operated vs nonoperated leg: 14.54% vs 11.63% for BF [ P = .000], 17.31% vs 22.37% for ST [ P = .000], and 15.64% vs 13.54% for semimembranosus [SM] [ P = .014]). Neither the muscle activity of SM and gracilis muscles nor total posterior thigh muscle activity (sum of exercise-related ΔT2 of the BF, ST, and SM muscles) presented any differences in individuals who had undergone ACLR with an ST tendon autograft compared with healthy controls. Conclusion: These findings indicate that ACLR with a ST tendon autograft might notably influence the function of the hamstring muscles and, in particular, their hierarchic dimensions under fatiguing loading circumstances, with increases in relative BF activity contribution and decreases in relative ST activity after ACLR. This between-group difference in hamstring muscle activation pattern suggests that the BF partly compensates for deficient ST function in eccentric loading. These alterations might have implications for athletic performance and injury risk and should probably be considered in rehabilitation and hamstring injury prevention after ACLR with a ST tendon autograft. </jats:sec

    Caring for migrants and refugees with end-stage kidney disease in Europe

    Get PDF
    With the number of migrants and refugees increasing globally, the nephrology community is increasingly confronted with issues relating to the management of end-stage kidney disease in this population, including medical, logistical, financial, and moral-ethical questions. Beginning with data for the state of affairs regarding refugees in Europe and grounded in moral reasoning theory, this Policy Forum Perspective contends that to improve care for this specific population, there is a need for: (1) clear demarcations of responsibilities across the societal (macro), local (meso), and individual (micro) levels, such that individual providers are aware of available resources and able to provide essential medical care while societies and local communities determine the general approach to dialysis care for refugees; (2) additional data and evidence to facilitate decision making based on facts rather than emotions; and (3) better information and education in a broad sense (cultural sensitivity, legal rights and obligations, and medical knowledge) to address specific needs in this population. Although the nephrology community cannot leverage a change in the geopolitical framework, we are in a position to generate accurate data describing the dimensions of care of refugee or migrant patients with end-stage kidney disease to advocate for a holistic approach to treatment for this unique patient population

    Eculizumab in Shiga toxin-producing Escherichia coli hemolytic uremic syndrome: a systematic review

    Get PDF
    BACKGROUND: Infection-associated hemolytic uremic syndrome (IA-HUS), most often due to infection with Shiga toxin-producing bacteria, mainly affects young children. It can be acutely life-threatening, as well as cause long-term kidney and neurological morbidity. Specific treatment with proven efficacy is lacking. Since activation of the alternative complement pathway occurs in HUS, the monoclonal C5 antibody eculizumab is often used off-label once complications, e.g., seizures, occur. Eculizumab is prohibitively expensive and carries risk of infection. Its utility in IA-HUS has not been systematically studied. This systematic review aims to present, summarize, and evaluate all currently available data regarding the effect of eculizumab administration on medium- to long-term outcomes (i.e., outcomes after the acute phase, with a permanent character) in IA-HUS. METHODS: PubMed, Embase, and Web of Science were systematically searched for studies reporting the impact of eculizumab on medium- to long-term outcomes in IA-HUS. The final search occurred on March 2, 2022. Studies providing original data regarding medium- to long-term outcomes in at least 5 patients with IA-HUS, treated with at least one dose of eculizumab during the acute illness, were included. No other restrictions were imposed regarding patient population. Studies were excluded if data overlapped substantially with other studies, or if outcomes of IA-HUS patients were not reported separately. Study quality was assessed using the ROBINS-I tool for risk of bias in non-randomized studies of interventions. Data were analyzed descriptively. RESULTS: A total of 2944 studies were identified. Of these, 14 studies including 386 eculizumab-treated patients met inclusion criteria. All studies were observational. Shiga toxin-producing E. coli (STEC) was identified as the infectious agent in 381 of 386 patients (98.7%), effectively limiting the interpretation of the data to STEC-HUS patients. Pooling of data across studies was not possible. No study reported a statistically significant positive effect of eculizumab on any medium- to long-term outcome. Most studies were, however, subject to critical risk of bias due to confounding, as more severely ill patients received eculizumab. Three studies attempted to control for confounding through patient matching, although residual bias persisted due to matching limitations. DISCUSSION: Current observational evidence does not permit any conclusion regarding the impact of eculizumab in IA-HUS given critical risk of bias. Results of randomized clinical trials are eagerly awaited, as new therapeutic strategies are urgently needed to prevent long-term morbidity in these severely ill patients

    Digital image correlation as a tool for three-dimensional strain analysis in human tendon tissue

    Get PDF
    BACKGROUND: Determining the mechanical behaviour of tendon and ligamentous tissue remains challenging, as it is anisotropic, non-linear and inhomogeneous in nature. METHODS: In this study, three-dimensional (3D) digital image correlation (DIC) was adopted to examine the strain distribution in the human Achilles tendon. Therefore, 6 fresh frozen human Achilles tendon specimens were mounted in a custom made rig for uni-axial loading. 3D DIC measurements of each loading position were obtained and compared to 2 linear variable differential transformers (LVDT’s). RESULTS: 3D DIC was able to calculate tendon strain in every region of all obtained images. The scatter was found to be low in all specimens and comparable to that obtained in steel applications. The accuracy of the 3D DIC measurement was higher in the centre of the specimen where scatter values around 0.03% strain were obtained. The overall scatter remained below 0.3% in all specimens. The spatial resolution of 3D DIC on human tendon tissue was found to be 0.1 mm(2). The correlation coefficient between the 3D DIC measurements and the LVDT measurements showed an excellent linear agreement in all specimens (R(2) = 0.99). Apart from the longitudinal strain component, an important transverse strain component was revealed in all specimens. The strain distribution of both components was of a strongly inhomogeneous nature, both within the same specimen and amongst different specimens. CONCLUSION: DIC proved to be a very accurate and reproducible tool for 3D strain analysis in human tendon tissue. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40634-014-0007-8) contains supplementary material, which is available to authorized users

    Internal strain monitoring in composite materials with embedded photonic crystal fiber Bragg gratings

    Get PDF
    The possibility of embedding optical fiber sensors inside carbon fiber reinforced polymer (CFRP) for structural health monitoring purposes has already been demonstrated previously. So far however, these sensors only allowed axial strain measurements because of their low sensitivity for strain in the direction perpendicular to the optical fiber's axis. The design flexibility provided by novel photonic crystal fiber (PCF) technology now allows developing dedicated fibers with substantially enhanced sensitivity to such transverse loads. We exploited that flexibility and we developed a PCF that, when equipped with a fiber Bragg grating (FBG), leads to a sensor that allows measuring transverse strains in reinforced composite materials, with an order of magnitude increase of the sensitivity over the state-of-the-art. In addition it allows shear strain sensing in adhesive bonds, which are used in composite repair patches. This is confirmed both with experiments and finite element simulations on such fibers embedded in CFRP coupons and adhesive bonds. Our sensor brings the achievable transverse strain measurement resolution close to a target value of 1 mu strain and could therefore play an important role for multi-dimensional strain sensing, not only in the domain of structural health monitoring, but also in the field of composite material production monitoring. Our results thereby illustrate the added value that PCFs have to offer for internal strain measurements inside composite materials and structures

    Microstructured optical fiber Bragg grating-based shear stress sensing in adhesive bonds

    Get PDF
    We present shear stress sensing with a Bragg grating sensor fabricated in a highly birefringent microstructured optical fiber. This sensor has a shear strain sensing resolution of 0.04 pm/mu epsilon when embedded in a shear loaded adhesive bond. We achieve discrete shear stress mapping in an adhesive bond by embedding a multitude of these sensors at different locations in the bond line. Experiments and numerical modeling show the limited influence of angular misalignment of the sensor on its shear stress response. Finally, we discuss the cross-sensitivity of this sensor to shear strain and temperature
    • …
    corecore