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ABSTRACT   

The possibility of embedding optical fiber sensors inside carbon fiber reinforced polymer (CFRP) for structural health 
monitoring purposes has already been demonstrated previously. So far however, these sensors only allowed axial strain 
measurements because of their low sensitivity for strain in the direction perpendicular to the optical fiber’s axis. The 
design flexibility provided by novel photonic crystal fiber (PCF) technology now allows developing dedicated fibers 
with substantially enhanced sensitivity to such transverse loads. We exploited that flexibility and we developed a PCF 
that, when equipped with a fiber Bragg grating (FBG), leads to a sensor that allows measuring transverse strains in 
reinforced composite materials, with an order of magnitude increase of the sensitivity over the state-of-the-art. In 
addition it allows shear strain sensing in adhesive bonds, which are used in composite repair patches. This is confirmed 
both with experiments and finite element simulations on such fibers embedded in CFRP coupons and adhesive bonds. 
Our sensor brings the achievable transverse strain measurement resolution close to a target value of 1 µstrain and could 
therefore play an important role for multi-dimensional strain sensing, not only in the domain of structural health 
monitoring, but also in the field of composite material production monitoring. Our results thereby illustrate the added 
value that PCFs have to offer for internal strain measurements inside composite materials and structures.   

Keywords: photonic crystal fiber, microstructured optical fiber, optical fiber sensor, structural health monitoring, strain 
sensing, fiber Bragg grating, composite materials 
 

INTRODUCTION  
Photonic crystal fiber Bragg grating (PCFBG) sensors are becoming increasingly popular owing to the peculiar 
characteristics of photonic crystal fibers (PCFs) or microstructured optical fibers that cannot be achieved using 
conventional optical fiber technology. More specifically, the design flexibility of such PCFs allows developing sensors 
that exhibit selective sensitivities to e.g. axial strain, transverse strain or even shear stress, whilst being negligibly cross-
sensitive to temperature changes. This is a great asset for structural health monitoring (SHM) applications. Section 1 of 
this paper will briefly summarize the state-of-the-art on the use of PCF based sensors for SHM purposes. 

Section 2 focuses on a specific PCF design, to which we refer as ‘Butterfly’ PCF. This fiber is highly birefringent and 
encodes transverse strain into the spectral distance Δλ between the two Bragg peaks reflected by a fiber Bragg grating 
(FBG) fabricated in this fiber (Figure 1). Since the birefringence of that PCF is almost insensitive to temperature 
changes, the transverse strain measurement is close to being independent of temperature variations. In Section 3 we show 
that by using this PCF, we can simultaneously measure the normal strain in 3 dimensions inside a composite - the axial 
strain, the transverse in-plane strain and the transverse out-of-plane strain - with μstrain resolutions using commercially 
available FBG interrogator equipment. The transverse strain sensitivity proves also to be valuable in composite 
manufacturing monitoring. Finally, Section 4 deals with the potential of our PCFBG sensor for shear stress 
measurements and disbond monitoring in lap joints. 
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(a) (b) (c) (d) 

Figure 1: Differential sensing principle of the Butterfly PCFBG. Load applied transversally to the fiber is encoded in the 
spacing Δλ between the two Bragg peaks. (a, b) Response of the sensor to temperature changes or axial strain – both 
Bragg peaks move in to higher or lower wavelengths and Δλ remains unchanged. (c,d) Response of the sensor to 
transverse load – the Bragg peaks move in opposite direction and Δλ changes. 

STATE-OF-THE-ART OF PCF FOR SHM-RELATED APPLICATIONS 
As stated above, PCF technology allows achieving optical fibers with sensing characteristics that cannot be obtained 
with conventional fiber technology. PCF sensing approaches and techniques have been reviewed for example by Frazao 
et al. [1], Canning [2] and Pinto et al. [3]. With respect to SHM related applications, PCF based sensors have been 
mostly combined with gratings inscribed in these fibers to enable measurements of mechanical quantities. A far from 
exhaustive list of examples includes pressure, transverse force, strain and bend sensing, with emphasis on avoiding strain 
and temperature cross-sensitivity or discriminating between strain and temperature effects [4]-[13]. Grating inscription 
techniques in PCF have been reviewed recently in [14]. 

THE BUTTERFLY PCF AND GRATINGS WRITTEN THEREIN 
We have obtained the cross-section of our highly birefringent Butterfly PCF following extensive modeling that 
considered both the optical and the mechanical characteristics of the fiber [15]. We have modeled the sensitivity of the 
phase modal birefringence B to external thermo-mechanical perturbations with the commercially available COMSOL 
Multiphysics® software [16]. 

The phase modal birefringence B is defined as: 

ܤ  = ఒଶగ ൫ߚ௫ −  ൯ (1)	௬ߚ
 
where βx and βy are the propagation constants of the orthogonally polarized fundamental modes propagating through the 
PCF. When fabricating a FBG with a period Λ in a birefringent PCF, the grating will return two reflection peaks with a 
wavelength separation Δλ (see also Figure 1) given by: 

ߣ∆  =  Λ (2)ܤ2
 

The polarimetric pressure and temperature sensitivities Kp and KT are defined as (αT is the linear thermal expansion 
coefficient): 

 
௣ܭ  ≜ ଶగఒ ௗ஻ௗ௣ 	; ்ܭ	 ≜ ଶగఒ ቀௗ஻ௗ் +  ቁ (3)்ߙܤ
 

If we want to obtain a PCF that is very sensitive to pressure whilst being – in as much as possible – insensitive to 
temperature changes, the figure-of-merit Kp / KT should be maximized. To do so one has to be able to calculate Kp and 
KT. A full description of how this can be done is out of the scope of this paper. We refer to [15], [17] and [18] for a more 
detailed discussion. 

The “Butterfly” PCF that we have obtained, with an ideal and as-built cross-section as shown in Figure 2, fulfills our 
requirements in terms of sensitivity, fiber manufacturability and optical guiding properties.  
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Parameter Typical Value
Outer cladding diameter 125 pm

Number of rings of airholes 6 - 9
Airhole pitch A 3.5 - 4 pm

di/A 0.225
d2/A 0.95 - 0.99

dcore/A 0.9
Core doping concentration - 2.88 mol%

 

 

  

(a) (b) (c) (d) 

Figure 2: (a) Ideal cross-section of the Butterfly PCF (b) Ideal parameters of the butterfly PCF (c) Scanning Electron 
Microscope photograph of the cross-section of the fabricated Butterfly PCF. (d) Close-up of the core region of the PCF. 

THREE-DIMENSIONAL STRAIN MEASUREMENTS IN COMPOSITE MATERIALS 
Parallel embedded Butterfly PCFBGs  

Due to its particular structure, the sensitivity of the butterfly PCFBG to transverse strain varies in a sinusoidal manner 
with the angular orientation α of the microstructure with respect to the direction of the applied load. It is most sensitive 
when the load is applied along α = 90°, which corresponds to the direction of the slow-axis indicated in Figure 2(a) [19]. 
This dependence of the sensitivity on the angular orientation can be exploited to quantify the strain along the 3 directions 
of space inside a carbon fiber reinforced polymer (CFRP) composite material. To do so, one needs to relate the normal 
strains in the 3 directions of space in the composite material to the measured changes in the 4 Bragg wavelengths 
returned by two closely spaced parallel PCFBG sensors embedded in a composite coupon with different angular 
orientations, as schematically illustrated in Figure 3. 

The relation between the strains and the temperature in the material at the location of the sensors and the Bragg 
wavelength shifts is given by Equation (4). 

ۇۉ 
ۊیଷ௛Δܶߝଶ௛ߝଵ௛ߝ = ሾܶܥሿ ∙ ሾܭሿିଵ ∙ ۈۉ

஻ଵ,ଵᇱߣΔۇ ஻ଵ,ଶᇱߣ஻ଵ,ଵᇱ⁄Δߣ ஻ଶ,ଵᇱߣ஻ଵ,ଶᇱ⁄Δߣ ஻ଶ,ଶᇱߣ஻ଶ,ଵᇱ⁄Δߣ ⁄஻ଶ,ଶᇱߣ ۋی
 (4) ۊ

This equation uses the Transfer Coefficient matrix [TC] that relates the temperature and strain distributions in the host 
composite material to those in the optical fiber sensor in the coordinate system (1h,2h,3h) of the host composite material 
[20], [21]. More specifically, εଵ୦ is the axial strain, εଶ୦ is the transverse in-plane strain and εଷ୦ is the transverse out-of-
plane strain (see also Figure 3). We obtained the [TC] matrix using extensive finite-element modelling. The sensitivity 
matrix [K] relates the temperature and strain changes in the optical fiber core to the output of the optical signal [22], 
[23]. This sensitivity matrix is obtained in an analytical form. λB1,1’ and λB1,2’ denote the initial unstrained mean Bragg 
wavelengths of the first PCFBG, and λB2,1’ and λB2,2’ are the initial unstrained mean Bragg wavelengths of the second 
PCFBG. ΔλB1,1’, ΔλB1,2’, ΔλB2,1’ and ΔλB2,2’ are the shifts of these Bragg wavelength peaks that stem from thermo-
mechanical load applied to the composite material. The coordinates 1’ and 2’ associated with the two Bragg wavelengths 
returned by one PCFBG correspond to the directions of the slow and fast axes of the PCF, respectively (see Figure 2). 

Figure 4 (b) shows a typical result obtained for a transverse out-of-plane load applied to a CFRP coupon as illustrated in 
Figure 4 (a). We obtain a good agreement between our finite element modelling results and the strains measured and 
derived using Equation (4). The calculated axial strain in the composite material shows a relatively larger relative error 
of up to 50% when compared to the experimental data of the strain gauge. However, and since the axial strains are very 
low, this corresponds to a difference of only 24 με in the PCFBG configuration 0°/90° as sketched in Figure 3. The 
values of the transverse in-plane strain also exhibit some differences with respect to the measured strains, which can be 
explained by their low values. This stems from the fact that the expected strains along the 1h- and 2h-directions have the 
same magnitude as the strain measurement resolutions of about 5 με (these resolutions are not discussed in this paper). 
The calculated transverse out-of-the plane strains exhibit an excellent agreement with the measured strains, with a 
relative error around 10%. 
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will nearly remain constant, independently of the loading level. However, once a significant disbond starts to appear at 
one or both sides, these ratios will change. As derived in [29], with the presented sensor configuration based on three 
butterfly PCFBG shear stress sensors, the minimum length of a detectable disbond is 100 μm, while the exact loading 
level does not need to be known (but should be above 17% of the failure load). These results show that the initiation and 
growth of disbonds in an adhesive joint can be quantitatively evaluated in a self-referencing manner, provided that one 
uses at least three shear stress PCFBG sensors. 

CONCLUSION 
We have introduced the principles of operation of a fiber Bragg grating based sensor inscribed in a highly birefringent 
photonic crystal fiber that has been designed so as to feature an enhanced sensitivity to transverse strain whilst being 
almost insensitive to temperature changes. We have illustrated how this sensor can be used in various applications that 
may support structural health monitoring, in particular three-dimensional strain measurements inside composite 
materials, cure process monitoring of and residual strain quantification in composite materials and shear stress and 
disbond monitoring in adhesive joints. 
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