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ABSTRACT

The possibility of embedding optical fiber sensors inside carbon fiber reinforced polymer (CFRP) for structural health
monitoring purposes has already been demonstrated previously. So far however, these sensors only allowed axial strain
measurements because of their low sensitivity for strain in the direction perpendicular to the optical fiber’s axis. The
design flexibility provided by novel photonic crystal fiber (PCF) technology now allows developing dedicated fibers
with substantially enhanced sensitivity to such transverse loads. We exploited that flexibility and we developed a PCF
that, when equipped with a fiber Bragg grating (FBG), leads to a sensor that allows measuring transverse strains in
reinforced composite materials, with an order of magnitude increase of the sensitivity over the state-of-the-art. In
addition it allows shear strain sensing in adhesive bonds, which are used in composite repair patches. This is confirmed
both with experiments and finite element simulations on such fibers embedded in CFRP coupons and adhesive bonds.
Our sensor brings the achievable transverse strain measurement resolution close to a target value of 1 pstrain and could
therefore play an important role for multi-dimensional strain sensing, not only in the domain of structural health
monitoring, but also in the field of composite material production monitoring. Our results thereby illustrate the added
value that PCFs have to offer for internal strain measurements inside composite materials and structures.

Keywords: photonic crystal fiber, microstructured optical fiber, optical fiber sensor, structural health monitoring, strain
sensing, fiber Bragg grating, composite materials

INTRODUCTION

Photonic crystal fiber Bragg grating (PCFBG) sensors are becoming increasingly popular owing to the peculiar
characteristics of photonic crystal fibers (PCFs) or microstructured optical fibers that cannot be achieved using
conventional optical fiber technology. More specifically, the design flexibility of such PCFs allows developing sensors
that exhibit selective sensitivities to e.g. axial strain, transverse strain or even shear stress, whilst being negligibly cross-
sensitive to temperature changes. This is a great asset for structural health monitoring (SHM) applications. Section 1 of
this paper will briefly summarize the state-of-the-art on the use of PCF based sensors for SHM purposes.

Section 2 focuses on a specific PCF design, to which we refer as ‘Butterfly’ PCF. This fiber is highly birefringent and
encodes transverse strain into the spectral distance AL between the two Bragg peaks reflected by a fiber Bragg grating
(FBG) fabricated in this fiber (Figure 1). Since the birefringence of that PCF is almost insensitive to temperature
changes, the transverse strain measurement is close to being independent of temperature variations. In Section 3 we show
that by using this PCF, we can simultaneously measure the normal strain in 3 dimensions inside a composite - the axial
strain, the transverse in-plane strain and the transverse out-of-plane strain - with pstrain resolutions using commercially
available FBG interrogator equipment. The transverse strain sensitivity proves also to be valuable in composite
manufacturing monitoring. Finally, Section 4 deals with the potential of our PCFBG sensor for shear stress
measurements and disbond monitoring in lap joints.
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Figure 1: Differential sensing principle of the Butterfly PCFBG. Load applied transversally to the fiber is encoded in the
spacing AA between the two Bragg peaks. (a, b) Response of the sensor to temperature changes or axial strain — both
Bragg peaks move in to higher or lower wavelengths and AA remains unchanged. (c,d) Response of the sensor to
transverse load — the Bragg peaks move in opposite direction and AL changes.

STATE-OF-THE-ART OF PCF FOR SHM-RELATED APPLICATIONS

As stated above, PCF technology allows achieving optical fibers with sensing characteristics that cannot be obtained
with conventional fiber technology. PCF sensing approaches and techniques have been reviewed for example by Frazao
et al. [1], Canning [2] and Pinto et al. [3]. With respect to SHM related applications, PCF based sensors have been
mostly combined with gratings inscribed in these fibers to enable measurements of mechanical quantities. A far from
exhaustive list of examples includes pressure, transverse force, strain and bend sensing, with emphasis on avoiding strain
and temperature cross-sensitivity or discriminating between strain and temperature effects [4]-[13]. Grating inscription
techniques in PCF have been reviewed recently in [14].

THE BUTTERFLY PCF AND GRATINGS WRITTEN THEREIN

We have obtained the cross-section of our highly birefringent Butterfly PCF following extensive modeling that
considered both the optical and the mechanical characteristics of the fiber [15]. We have modeled the sensitivity of the
phase modal birefringence B to external thermo-mechanical perturbations with the commercially available COMSOL
Multiphysics® software [16].

The phase modal birefringence B is defined as:

B=2(B-By) (1)

where f and f, are the propagation constants of the orthogonally polarized fundamental modes propagating through the
PCF. When fabricating a FBG with a period A in a birefringent PCF, the grating will return two reflection peaks with a
wavelength separation A (see also Figure 1) given by:

AL = 2BA )

The polarimetric pressure and temperature sensitivities K, and K are defined as (ar is the linear thermal expansion
coefficient):

L 2mdB o, 2m(dB
Ky 2 22 Ky 2 X (dT+BaT) 3)

If we want to obtain a PCF that is very sensitive to pressure whilst being — in as much as possible — insensitive to
temperature changes, the figure-of-merit X, / K7 should be maximized. To do so one has to be able to calculate K, and
Kr. A full description of how this can be done is out of the scope of this paper. We refer to [15], [17] and [18] for a more
detailed discussion.

The “Butterfly” PCF that we have obtained, with an ideal and as-built cross-section as shown in Figure 2, fulfills our
requirements in terms of sensitivity, fiber manufacturability and optical guiding properties.
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Parameter Typical Value

é A Outer cladding diameter 125 um
3 3 ~ Number of rings of airholes 6-9
g / " Airhole pitch A 3.5-4pum
o Van di/A 0.225
3 d2/A 0.95-0.99
v deore/\ 0.9

Fast axis (a:=0°) Core doping concentration ~ 2.88 mol%
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Figure 2: (a) Ideal cross-section of the Butterfly PCF (b) Ideal parameters of the butterfly PCF (c) Scanning Electron
Microscope photograph of the cross-section of the fabricated Butterfly PCF. (d) Close-up of the core region of the PCF.

THREE-DIMENSIONAL STRAIN MEASUREMENTS IN COMPOSITE MATERIALS
Parallel embedded Butterfly PCFBGs

Due to its particular structure, the sensitivity of the butterfly PCFBG to transverse strain varies in a sinusoidal manner
with the angular orientation o of the microstructure with respect to the direction of the applied load. It is most sensitive
when the load is applied along o = 90°, which corresponds to the direction of the slow-axis indicated in Figure 2(a) [19].
This dependence of the sensitivity on the angular orientation can be exploited to quantify the strain along the 3 directions
of space inside a carbon fiber reinforced polymer (CFRP) composite material. To do so, one needs to relate the normal
strains in the 3 directions of space in the composite material to the measured changes in the 4 Bragg wavelengths
returned by two closely spaced parallel PCFBG sensors embedded in a composite coupon with different angular
orientations, as schematically illustrated in Figure 3.

The relation between the strains and the temperature in the material at the location of the sensors and the Bragg
wavelength shifts is given by Equation (4).
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This equation uses the Transfer Coefficient matrix [TC] that relates the temperature and strain distributions in the host
composite material to those in the optical fiber sensor in the coordinate system (1h,2h,3h) of the host composite material
[20], [21]. More specifically, ! is the axial strain, €} is the transverse in-plane strain and £} is the transverse out-of-
plane strain (see also Figure 3). We obtained the [TC] matrix using extensive finite-element modelling. The sensitivity
matrix [K] relates the temperature and strain changes in the optical fiber core to the output of the optical signal [22],
[23]. This sensitivity matrix is obtained in an analytical form. Ag; ;> and Ag;,> denote the initial unstrained mean Bragg
wavelengths of the first PCFBG, and Ap, ;- and Ap,,- are the initial unstrained mean Bragg wavelengths of the second
PCFBG. AAB, -, Ahgi2, Alpyy- and Alg,,- are the shifts of these Bragg wavelength peaks that stem from thermo-
mechanical load applied to the composite material. The coordinates 1’ and 2’ associated with the two Bragg wavelengths
returned by one PCFBG correspond to the directions of the slow and fast axes of the PCF, respectively (see Figure 2).

Figure 4 (b) shows a typical result obtained for a transverse out-of-plane load applied to a CFRP coupon as illustrated in
Figure 4 (a). We obtain a good agreement between our finite element modelling results and the strains measured and
derived using Equation (4). The calculated axial strain in the composite material shows a relatively larger relative error
of up to 50% when compared to the experimental data of the strain gauge. However, and since the axial strains are very
low, this corresponds to a difference of only 24 pe in the PCFBG configuration 0°/90° as sketched in Figure 3. The
values of the transverse in-plane strain also exhibit some differences with respect to the measured strains, which can be
explained by their low values. This stems from the fact that the expected strains along the 1h- and 2h-directions have the
same magnitude as the strain measurement resolutions of about 5 pe (these resolutions are not discussed in this paper).
The calculated transverse out-of-the plane strains exhibit an excellent agreement with the measured strains, with a
relative error around 10%.
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Figure 3: Illustration of 2 closely space PCFBGs embedded in the middle of a laminate composite (not drawn to scale) with
the longitudinal direction of the optical fibers aligned with the reinforcement fibers of the embedding plies. The left
PCFBG is oriented with o = 0°, whilst the right sensor is oriented with o = 90°. The 2 PCFBGs are stripped over a few
centimeters at the grating location. The axis system (1",2"3") represents the coordinate system within the host
composite material. The black double arrows indicate the directions of the carbon reinforcement fibers in the plies.
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Figure 4: (a) Experimental set-up used for transverse out-of-the plane loading of a CFRP coupon. The CFRP sample is
compressed between two metal blocs along the direction through the thickness. The coordinate system (1"2",3") of the
composite sample is indicated. (b) Measured strains in [90/0],, and [0/90],, laminates as a function of the applied

transverse out-of-plane stress. £, e and 2 have been calculated with Equation (4). sf_FEM, eg_FEM and eé‘_FEM are the

results of our finite element simulations. S;urf is the strain in the direction through the thickness, calculated from the

load cell reading and from the material parameters of the laminate.

Composite cure monitoring and residual strain quantification

In earlier work we have shown that it is possible to efficiently integrate Butterfly PCFBG based sensors in carbon fiber
reinforced composite (CFRP) material to monitor its manufacturing process. The sensors allow assessing the onset of
polymerization and quantifying the internal residual strain in the composite material that was created as a result of the
vacuum bagging autoclave process [24]-[26].

Figure 5(a) shows a scheme of the CFRP specimen in which the Butterfly PCFBG was integrated and the evolution of
the Bragg wavelength separation AL during the cure cycle. The temperature variation recorded by thermocouple TC6
placed in close vicinity to the PCFBG is shown as well. Figure 5(b) shows a first drop of A\ (part B), which corresponds
to the polymerization of the sample. The cooling phase (part D) features a large decrease of AL associated with the build-
up of residual strains during the consolidation phase. Since the phase modal birefringence of the Butterfly PCF is
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inherently insensitive to temperature, the changes in AA are due to thermally induced transverse strain resulting from the
changing strain state in the CFRP material as it cures.

In part B, AA decreases with 22 pm which corresponds to a compressive transverse strain of about -100 ustrain. In region
C, the sensor signal remains constant meaning that the PCFBG sensor measures no transverse strain. One can therefore
reasonably assume that the cure reaction has been completed and that the composite material is formed. The cooling
down to room temperature (part D) is associated with a large decrease of AA and thus with the development of
substantial transverse residual strain of about -1100 pstrain in the composite material. The conversion from change in AA
to actual transverse strain values is obtained using data from previous sensor calibrations, as explained in [26].
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Figure 5: (a) Schematic of the optical fiber network embedded in the composite specimen. The coordinate system of the
laminate is indicated. TC stands for thermocouple. (b) Changes in the temperature and in the peak separation AA during
the entire cure cycle. The temperature profile is recorded with thermocouple TC6 (Adapted from [26]).

SHEAR STRAIN AND DISBOND MONITORING WITH THE BUTTERFLY PCF

We have also shown that it is possible to measure shear strain in glued joints with a butterfly PCF that is embedded such
that the transverse strain sensing axes of the PCF are aligned with the directions of principal stress in a shear loaded
single lap adhesive joint (SLJ) [27]. The scheme of the embedded sensor and the measured change of the Bragg
wavelength separation with applied load are shown in Figure 6. We obtained a shear stress sensitivity of about
60 pm/MPa, which corresponds to a shear strain sensitivity of 0.01 pm/pe. Compared to conventional birefringent fibers
and as discussed in [27], our dedicated PCF design has a fourfold larger sensitivity. These results also show that by
changing the angular orientation of the butterfly PCFBG sensor it can be used for either shear strain sensing or for
transverse strain sensing, which provides opportunities for multi-axial strain sensing with the same type of sensor [28].
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Figure 6: (a) Configuration of the tested and modeled SLJ with an optical fiber embedded in the center of the adhesive layer.
(b) The Bragg peak separation increases due to tensile loading with a sensor response of 67.4 pm/kN. Results from 2D
FEM modeling of the SLJ are in very good agreement with the experimental results (Adapted from [27]).

The combination of multiple shear stress sensors can provide insight in the existence and propagation of disbonds in
SLJs. To demonstrate that ability, we have embedded three butterfly PCFBG shear stress sensors in a SLJ at the specific
locations where the magnitude of the peel stress is minimal (predicted with Goland-Reissner theory): Sensor 1 and 3 near
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the edges and sensor 2 in the middle. The SLJs were made of two aluminum laps bonded by a two-component epoxy
adhesive (Huntsman Araldite® 2015, E = 1850 MPa, G= 650 MPa and v = 0.42). We subjected the sample to a cyclic
tensile loading test the response of the 3 sensors and their (collective) ability to detect disbond initiation and propagation
by monitoring their response throughout the fatigue test.

The cyclic load was applied at a frequency of 2 Hz, following a haversine trend and using a displacement controlled
tensile load. The optimal maximum load was at 45% of the failure load (F,,,x = 2.6 kN), leading to a cycle time of several
tens of thousands of cycles before the joint broke (Setup is shown in Figure 7(a)). At regular intervals we calibrated the
response of the PCFBG sensors using a commercially available FBG interrogation unit (FBG-scan 608). The evolution
of the sensor’s response throughout the complete cyclic test is a measure of the redistribution of shear stress in the bond
layer, which provides information on the initiation and propagation of cracks or disbonds. Up to almost 10 000 cycles the
response of sensor 2 remains nearly constant with a relative change of less than 10%. Afterwards the response increases
to a maximum of almost 19 400 cycles (+313%) and decreases again before sample failure. The responses of both sensor
1 and sensor 3 strongly increase during the first half of the test. After 8000 cycles for sensor 3 (+45%) and 10 000 cycles
for sensor 1 (+37%), respectively, this trend changes and their responses decrease to nearly zero. By reconstructing the
response of the sensors through 2D FE analysis, we could derive the length of the cracks on both sides of the SLJ (Figure
7 (b)). As can be noticed in Figure 7 (c) the reconstructed model (empty scatter points) is in very good agreement with
the experiments (solid scatter points).
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Figure 7: (a) Photograph of the sample placed in the tensile loading test setup. (b) Disbonding length on both sides of the
adhesive during the cyclic test, reconstructed via FE simulations. (c) Evolution recorded during the low frequency
cycles in the fatigue test of the percentage change with respect to the initial sensor response. (Adapted from [29]).

Our results demonstrate that by monitoring the response of shear stress fiber optic sensors integrated in a SLJ, we can
continuously assess the shear stress distribution and hence detect the initiation and propagation of disbonds. Moreover,
we find that when a disbond is present with a length of 1% of the initial overlap length, the sensor response can already
change by 10%. In real applications, however, it would be impractical to expose the structure to a calibrated load in order
to determine the sensor sensitivity. The configuration discussed previously can nevertheless still be used when the
central sensor (sensor 2) is used as a reference signal for the signals of sensors 1 and 3. As long as the bond line remains
intact, the ratios R;, and R3,, defined as

— d(A}'SETLSOT 1) . — d(Aﬂsensor 3)
d(AASEnSOT 2) 32 d(AAsensor 2)

)
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will nearly remain constant, independently of the loading level. However, once a significant disbond starts to appear at
one or both sides, these ratios will change. As derived in [29], with the presented sensor configuration based on three
butterfly PCFBG shear stress sensors, the minimum length of a detectable disbond is 100 um, while the exact loading
level does not need to be known (but should be above 17% of the failure load). These results show that the initiation and
growth of disbonds in an adhesive joint can be quantitatively evaluated in a self-referencing manner, provided that one
uses at least three shear stress PCFBG sensors.

CONCLUSION

We have introduced the principles of operation of a fiber Bragg grating based sensor inscribed in a highly birefringent
photonic crystal fiber that has been designed so as to feature an enhanced sensitivity to transverse strain whilst being
almost insensitive to temperature changes. We have illustrated how this sensor can be used in various applications that
may support structural health monitoring, in particular three-dimensional strain measurements inside composite
materials, cure process monitoring of and residual strain quantification in composite materials and shear stress and
disbond monitoring in adhesive joints.
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