290 research outputs found

    Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption

    Get PDF
    This study attempts to infer aerosol vertical structure in the urban boundary layer using passive hyperspectral measurements. A spectral sorting technique is developed to retrieve total aerosol optical depth (AOD) and effective aerosol layer height (ALH) from hyperspectral measurements in the 1.27‐μm oxygen absorption band by the mountaintop Fourier Transform Spectrometer at the California Laboratory for Atmospheric Remote Sensing instrument (1,673 m above sea level) overlooking the LA basin. Comparison to AOD measurements from Aerosol Robotic Network and aerosol backscatter profile measurements from a Mini MicroPulse Lidar shows agreement, with coefficients of determination (r^2) of 0.74 for AOD and 0.57 for effective ALH. On average, the AOD retrieval has an error of 24.9% and root‐mean‐square error of 0.013, while the effective ALH retrieval has an error of 7.8% and root‐mean‐square error of 67.01 m. The proposed method can potentially be applied to existing and future satellite missions with hyperspectral oxygen measurements to constrain aerosol vertical distribution on a global scale

    Neonatal screening for congenital hypothyroidism in the Netherlands: Cognitive and motor outcome at 10 years of age

    Get PDF
    Contains fulltext : 35300.pdf (publisher's version ) (Open Access)CONTEXT: Patients with thyroidal congenital hypothyroidism (CH-T) born in The Netherlands in 1981-1982 showed persistent intellectual and motor deficits during childhood and adulthood, despite initiation of T(4) supplementation at a median age of 28 d after birth. OBJECTIVE: The present study examined whether advancement of treatment initiation to 20 d had resulted in improved cognitive and motor outcome. DESIGN/SETTING/PATIENTS: In 82 Dutch CH-T patients, born in 1992 to 1993 and treated at a median age of 20 d (mean, 22 d; range, 2-73 d), cognitive and motor outcome was assessed (mean age, 10.5 yr; range, 9.6-11.4 yr). Severity of CH-T was classified according to pretreatment free T(4) concentration. MAIN OUTCOME MEASURE: Cognitive and motor outcome of the 1992-1993 cohort in comparison to the 1981 to 1982 cohort was the main outcome measure. RESULTS: Patients with severe CH-T had lower full-scale (93.7), verbal (94.9), and performance (93.9) IQ scores than the normative population (P < 0.05), whereas IQ scores of patients with moderate and mild CH-T were comparable to those of the normative population. In all three severity subgroups, significant motor problems were observed, most pronounced in the severe CH-T group. No correlations were found between starting day of treatment and IQ or motor outcome. CONCLUSIONS: Essentially, findings from the 1992-1993 cohort were similar to those of the 1981-1982 cohort. Apparently, advancing initiation of T(4) supplementation from 28 to 20 d after birth did not result in improved cognitive or motor outcome in CH-T patients

    Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    Get PDF
    Methane (CH_4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH_4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼2 kg/h to 5 kg/h through ∼5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign

    Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption

    Get PDF
    This study attempts to infer aerosol vertical structure in the urban boundary layer using passive hyperspectral measurements. A spectral sorting technique is developed to retrieve total aerosol optical depth (AOD) and effective aerosol layer height (ALH) from hyperspectral measurements in the 1.27‐μm oxygen absorption band by the mountaintop Fourier Transform Spectrometer at the California Laboratory for Atmospheric Remote Sensing instrument (1,673 m above sea level) overlooking the LA basin. Comparison to AOD measurements from Aerosol Robotic Network and aerosol backscatter profile measurements from a Mini MicroPulse Lidar shows agreement, with coefficients of determination (r^2) of 0.74 for AOD and 0.57 for effective ALH. On average, the AOD retrieval has an error of 24.9% and root‐mean‐square error of 0.013, while the effective ALH retrieval has an error of 7.8% and root‐mean‐square error of 67.01 m. The proposed method can potentially be applied to existing and future satellite missions with hyperspectral oxygen measurements to constrain aerosol vertical distribution on a global scale

    The two photocycles of photoactive yellow protein from Rhodobacter sphaeroides

    Get PDF
    The absorption spectrum of the photoactive yellow protein from Rhodobacter sphaeroides (R-PYP) shows two maxima, absorbing at 360 nm (R-PYP(360)) and 446 nm (R-PYP(446)), respectively. Both forms are photoactive and part of a temperature- and pH-dependent equilibrium (Haker, A., Hendriks, J., Gensch, T., Hellingwerf, K. J., and Crielaard, W. (2000) FEBS Lett. 486, 52-56). At 20 degrees C, for PYP characteristic, the 446-nm absorbance band displays a photocycle, in which the depletion of the 446-nm ground state absorption occurs in at least three phases, with time constants of <30 ns, 0.5 micros, and 17 micros. Intermediates with both blue- and red-shifted absorption maxima are transiently formed, before a blue-shifted intermediate (pB(360), lambda(max) = 360 nm) is established. The photocycle is completed with a monophasic recovery of the ground state with a time constant of 2.5 ms. At 7 degrees C these photocycle transitions are slowed down 2- to 3-fold. Upon excitation of R-PYP(360) with a UV-flash (330 +/- 50 nm) a species with a difference absorption maximum at approximately 435 nm is observed that returns to R-PYP(360) on a minute time scale. Recovery can be accelerated by a blue light flash (450 nm). R-PYP(360) and R-PYP(446) differ in their overall protein conformation, as well as in the isomerization and protonation state of the chromophore, as determined with the fluorescent polarity probe Nile Red and Fourier Transform Infrared spectroscopy, respectively

    UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms

    Get PDF
    UCATS (the UAS Chromatograph for Atmospheric Trace Species) was designed and built for observations of important atmospheric trace gases from unmanned aircraft systems (UAS) in the upper troposphere and lower stratosphere (UTLS). Initially it measured major chlorofluorocarbons (CFCs) and the stratospheric transport tracers nitrous oxide (N2O) and sulfur hexafluoride (SF6), using gas chromatography with electron capture detection. Compact commercial absorption spectrometers for ozone (O3) and water vapor (H2O) were added to enhance its capabilities on platforms with relatively small payloads. UCATS has since been reconfigured to measure methane (CH4), carbon monoxide (CO), and molecular hydrogen (H2) instead of CFCs and has undergone numerous upgrades to its subsystems. It has served as part of large payloads on stratospheric UAS missions to probe the tropical tropopause region and transport of air into the stratosphere; in piloted aircraft studies of greenhouse gases, transport, and chemistry in the troposphere; and in 2021 is scheduled to return to the study of stratospheric ozone and halogen compounds, one of its original goals. Each deployment brought different challenges, which were largely met or resolved. The design, capabilities, modifications, and some results from UCATS are shown and described here, including changes for future missions.Support was provided for HIPPO by NSF award no. AGS-0628452, for ATTREX by NASA Earth Venture program award no. NNA11AA55I, and for ATom by NASA award no. NNH17AE26I; additional support was provided by NASA Upper Atmosphere Research Program award no. NNH13AV69I. This work was also supported in part by the NOAA Cooperative Agreement with CIRES, NA17OAR4320101

    Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    Get PDF
    Methane (CH_4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH_4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼2 kg/h to 5 kg/h through ∼5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign

    Short-Term Erythropoietin Treatment Does Not Substantially Modulate Monocyte Transcriptomes of Patients with Combined Heart and Renal Failure

    Get PDF
    Combined heart and renal failure is associated with high cardiovascular morbidity and mortality. Anti-oxidant and anti-inflammatory, non-hematopoietic effects of erythropoietin (EPO) treatment have been proposed. Monocytes may act as biosensors of the systemic environment. We hypothesized that monocyte transcriptomes of patients with cardiorenal syndrome (CRS) reflect the pathophysiology of the CRS and respond to short-term EPO treatment at a recommended dose for treatment of renal anemia.Patients with CRS and anemia (n = 18) included in the EPOCARES trial were matched to healthy controls (n = 12). Patients were randomized to receive 50 IU/kg/week EPO or not. RNA from CD14(+)-monocytes was subjected to genome wide expression analysis (Illumina) at baseline and 18 days (3 EPO injections) after enrolment. Transcriptomes from patients were compared to healthy controls and effect of EPO treatment was evaluated within patients.In CRS patients, expression of 471 genes, including inflammation and oxidative stress related genes was different from healthy controls. Cluster analysis did not separate patients from healthy controls. The 6 patients with the highest hsCRP levels had more differentially expressed genes than the 6 patients with the lowest hsCRP levels. Analysis of the variation in log(2) ratios of all individual 18 patients indicated that 4 of the 18 patients were different from the controls, whereas the other 14 were quite similar. After short-term EPO treatment, every patient clustered to his or her own baseline transcriptome. Two week EPO administration only marginally affected expression profiles on average, however, individual gene responses were variable.In stable, treated CRS patients with mild anemia, monocyte transcriptomes were modestly altered, and indicated imprints of inflammation and oxidative stress. EPO treatment with a fixed dose has hematopoietic effects, had no appreciable beneficial actions on monocyte transcription profiles, however, could also not be associated with undesirable transcriptional responses
    corecore