1,538 research outputs found

    Integrated bottom up and top down approach to optimization of the extrusion process

    Get PDF
    Boal BV and the University of Twente participate in research projects focused on improvement of die design methods for aluminum extrusion dies. Within this research empirical knowledge is combined with insights gained from numerical process simulations. Design rules for improvements to the geometry and functionality of flat and porthole dies have been defined. For porthole dies this has led to enhanced die stability and significant reduction of scrap. For both flat and porthole dies an increase in production speed and a reduction of wear has been obtained. This paper will describe the scope of this research and present results achieved in industrial practice

    Survivorship care planning in gynecologic oncology perspectives from patients, caregivers, and health care providers

    Get PDF
    Purpose This qualitative study sought to describe the challenges following treatment and the preferences regarding survivorship care among patients treated for gynecological cancer, their caregivers, and health care providers. Methods Between July and August 2017, in-depth semi-structured interviews regarding survivorship were conducted at a large academic hospital in the USA among patients who recently completed treatment (< 12 months) for a gynecological cancer (ovarian, endometrial, cervical, and vulvar) and their primary caregivers. A focus group was conducted among health care providers (oncologists, nurses, and fellows). Main themes were identified using descriptive content analysis. Results A total of 30 individuals participated in this study (13 patients, 9 caregivers, 8 health care providers). Almost all participants reported a desire for more information on how to address survivorship needs, specifically as they related to side effects, follow-up schedule, and psychological assistance. Despite this uniformly identified need for more information, preferences for survivorship care planning differed across cancer types and individuals, with respect to content, timing, and mode of delivery. Health care providers expressed challenges in communicating with patients about survivorship, a desire to shift post-treatment conversations to the goal of improving quality of life as opposed to focusing on disease recurrence, and an unmet need for disease specific and individualized survivorship care planning. Conclusions Patients, caregivers, and health care providers each expressed a need for gynecologic cancer-tailored survivorship care resources

    Early age volume changes in metakaolin geopolymers: Insights from molecular simulations and experiments

    Get PDF
    The early age volume changes occurring during the geopolymerisation reaction are not sufficiently understood yet, due to shortage of experimental data and theoretical models. This work presents new results on chemical and autogenous deformation of sodium-activated geopolymers from metakaolin, focussing on the first 72 h of reaction. The results show that the geopolymers undergo early-age chemical expansion, not shrinkage. A model is proposed to explain the experimental result, leveraging recent advances from molecular simulations. The model predicts how the extent of chemical expansion is controlled by confined water in the molecular structure of the geopolymer. However, despite this underlying chemical expansion, geopolymer samples undergo autogenous shrinkage at the macroscale, which excludes self-desiccation as the origin of autogenous deformation. A better insight is gained by monitoring the kinetics of geopolymerisation using isothermal and differential calorimetry. Two kinetic regimes are identified, with apparent activation energies of approximately 90 kJ/mol and 70 kJ/mol. This suggests that two microscopic mechanisms concur to determine the early-age volume changes of geopolymer pastes

    Mathematical model for a novel cryogenic flow sensor using fibre Bragg gratings

    Get PDF
    In this work, a mathematical model is presented for a newly developed cryogenic flow meter which is based on fibre Bragg grating (FBG) principle. The principle of operation is to use the viscous drag force induced by a flowing fluid on an optical fibre placed transverse to the flow. An optical fibre will have a 5 mm long grating element inscribed in it and will be placed so that the sensor is at the centre of the pipe. The fibre will act as the bluff body, while the FBG sensor will pick up the bending strain induced in the fibre due to the drag force. The amount of bending strain which can be measured as a shift in Bragg wavelength can be calibrated to provide the mass flow rate. Here a mathematical model is being presented to predict the operation of the sensor and to calculate the sensor characteristics so that the sensor design can be optimised. The sensor exhibits an exponential relationship between sensitivity and mass flow rate. It is also seen that the sensitivity depends greatly on the fluid properties such as density and viscosity

    Characterization of elastic scattering near a Feshbach resonance in rubidium 87

    Full text link
    The s-wave scattering length for elastic collisions between 87Rb atoms in the state |f,m_f>=|1,1> is measured in the vicinity of a Feshbach resonance near 1007 G. Experimentally, the scattering length is determined from the mean-field driven expansion of a Bose-Einstein condensate in a homogeneous magnetic field. The scattering length is measured as a function of the magnetic field and agrees with the theoretical expectation. The position and the width of the resonance are determined to be 1007.40 G and 0.20 G, respectively.Comment: 4 pages, 2 figures minor revisions: added Ref.6, included error bar

    The key project managers’ competences for different types of projects

    Get PDF
    This paper describes a quantitative research approach for identifying key project managers’ competences for different types of projects. By identifying the perceived most valuable project manager competences, as having the most potential for increased contribution to project management (PM) performance, practitioners and organizations can select their priorities when developing their PM practices. The 46 competences (technical, behavioural and contextual) provided by IPMA (International Project Management Association) were surveyed through an online questionnaire. Three dimensions to distinguish project types were used: application area, innovation and complexity. Completed questionnaires were received from 96 project managers from Portugal. The results showed that 13 key competences (20%) were common to the majority of the projects. Most of these are behavioural competences, such as: ethics, reliability, engagement, openness, and leadership. It was also observed a clear correlation between technical competences and project complexity

    Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans

    Get PDF
    Global climate models were used to assess changes in the mean, variability and extreme sea surface temperatures (SSTs) in northern oceans with a focus on large marine ecosystems (LMEs) adjacent to North America, Europe, and the Arctic Ocean. Results were obtained from 26 models in the Community Model Intercomparison Project Phase 5 (CMIP5) archive and 30 simulations from the National Center for Atmospheric Research Large Ensemble Community Project (CESM-LENS). All of the simulations used the observed greenhouse gas concentrations for 1976–2005 and the RCP8.5 “business as usual” scenario for greenhouse gases through the remainder of the 21st century. In general, differences between models are substantially larger than among the simulations in the CESM-LENS, indicating that the SST changes are more strongly affected by model formulation than internal climate variability. The annual SST trends over 1976–2099 in the 18 LMEs examined here are all positive ranging from 0.05 to 0.5°C decade–1. SST changes by the end of the 21st century are primarily due to a positive shift in the mean with only modest changes in the variability in most LMEs, resulting in a substantial increase in warm extremes and decrease in cold extremes. The shift in the mean is so large that in many regions SSTs during 2070–2099 will always be warmer than the warmest year during 1976–2005. The SST trends are generally stronger in summer than in winter, as greenhouse gas heating is integrated over a much shallower climatological mixed layer depth in summer than in winter, which amplifies the seasonal cycle of SST over the 21st century. In the Arctic, the mean SST and its variability increases substantially during summer, when it is ice free, but not during winter when a thin layer of ice reforms and SSTs remain near the freezing point

    Multiple Andreev Reflection and Giant Excess Noise in Diffusive Superconductor/Normal-Metal/Superconductor Junctions

    Get PDF
    We have studied superconductor/normal metal/superconductor (SNS) junctions consisting of short Au or Cu wires between Nb or Al banks. The Nb based junctions display inherent electron heating effects induced by the high thermal resistance of the NS boundaries. The Al based junctions show in addition subharmonic gap structures in the differential conductance dI/dV and a pronounced peak in the excess noise at very low voltages V. We suggest that the noise peak is caused by fluctuations of the supercurrent at the onset of Josephson coupling between the superconducting banks. At intermediate temperatures where the supercurrent is suppressed a noise contribution ~1/V remains, which may be interpreted as shot noise originating from large multiple charges.Comment: 7 pages, 7 figures, extended versio

    Perspectives on tracking data reuse across biodata resources.

    Get PDF
    Data reuse is a common and vital practice in molecular biology and enables the knowledge gathered over recent decades to drive discovery and innovation in the life sciences. Much of this knowledge has been collated into molecular biology databases, such as UniProtKB, and these resources derive enormous value from sharing data among themselves. However, quantifying and documenting this kind of data reuse remains a challenge. The article reports on a one-day virtual workshop hosted by the UniProt Consortium in March 2023, attended by representatives from biodata resources, experts in data management, and NIH program managers. Workshop discussions focused on strategies for tracking data reuse, best practices for reusing data, and the challenges associated with data reuse and tracking. Surveys and discussions showed that data reuse is widespread, but critical information for reproducibility is sometimes lacking. Challenges include costs of tracking data reuse, tensions between tracking data and open sharing, restrictive licenses, and difficulties in tracking commercial data use. Recommendations that emerged from the discussion include: development of standardized formats for documenting data reuse, education about the obstacles posed by restrictive licenses, and continued recognition by funding agencies that data management is a critical activity that requires dedicated resources. Summaries of survey results are available at: https://docs.google.com/forms/d/1j-VU2ifEKb9C-sW6l3ATB79dgHdRk5v_lESv2hawnso/viewanalytics (survey of data providers) and https://docs.google.com/forms/d/18WbJFutUd7qiZoEzbOytFYXSfWFT61hVce0vjvIwIjk/viewanalytics (survey of users)

    Local densities, distribution functions, and wave function correlations for spatially resolved shot noise at nanocontacts

    Full text link
    We consider a current-carrying, phase-coherent multi-probe conductor to which a small tunneling contact is attached. We treat the conductor and the tunneling contact as a phase-coherent entity and use a Green's function formulation of the scattering approach. We show that the average current and the current fluctuations at the tunneling contact are determined by an effective local non-equilibrium distribution function. This function characterizes the distribution of charge-carriers (or quasi-particles) inside the conductor. It is an exact quantum-mechanical expression and contains the phase-coherence of the particles via local partial densities of states, called injectivities. The distribution function is analyzed for different systems in the zero-temperature limit as well as at finite temperature. Furthermore, we investigate in detail the correlations of the currents measured at two different contacts of a four-probe sample, where two of the probes are only weakly coupled contacts. In particular, we show that the correlations of the currents are at zero-temperature given by spatially non-diagonal injectivities and emissivities. These non-diagonal densities are sensitive to correlations of wave functions and the phase of the wave functions. We consider ballistic conductors and metallic diffusive conductors. We also analyze the Aharonov-Bohm oscillations in the shot noise correlations of a conductor which in the absence of the nano-contacts exhibits no flux-sensitivity in the conductance.Comment: 17 pages, 8 figure
    corecore