365 research outputs found

    Oximetry with the NMR signals of hemoglobin Val E11 and Tyr C7

    Get PDF
    The NMR visibility of the signals from erythrocyte hemoglobin (Hb) presents an opportunity to assess the vascular PO2 (partial pressure of oxygen) in vivo to gather insight into the regulation of O2 transport, especially in contracting muscle tissue. Some concerns, however, have arisen about the validity of using the Val E11 signal as an indicator of PO2, since its intensity depends on tertiary structural changes, in contrast to the quaternary structure changes associated with relaxed (R) and tense (T) transition during O2 binding. We have examined the Val E11 and Tyr C7 signal intensity as a function of Hb saturation by developing an oximetry system, which permits the comparative analysis of the NMR and spectrophotometric measurements. The spectrophotometric assay defines the Hb saturation level at a given PO2 and yields standard oxygen-binding curves. Under defined PO2 and Hb saturation values, the NMR measurements have determined that the Val E11 signal, as well as the Tyr C7 signal, tracks closely Hb saturation and can therefore serve as a vascular oxygen biomarker

    Intracellular oxygen tension limits muscle contraction-induced change in muscle oxygen consumption under hypoxic conditions during Hb-free perfusion.

    Get PDF
    Under acute hypoxic conditions, the muscle oxygen uptake (mV˙O2) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆PmbO2) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8 weeks old, n = 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O2 gas: 95.0%O2, 71.3%O2, and 47.5%O2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The ∆[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (SmbO2), and the PmbO2 was then calculated based on the SmbO2 and the O2 dissociation curve of the Mb. The SmbO2 and PmbO2 at rest decreased with the decrease in O2 supply, and the muscle contraction caused a further decrease in SmbO2 and PmbO2 under all O2 conditions. The net increase in mV˙O2 from the muscle contraction (∆mV˙O2) gradually decreased as the ∆PmbO2 decreased during muscle contraction. The results of this study suggest that ΔPmbO2 is a key determinant of the ΔmV˙O2

    Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    Get PDF
    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle

    Non-polaritonic effects in cavity-modified photochemistry

    Full text link
    Strong coupling of molecules to vacuum fields has been widely reported to lead to modified chemical properties such as reaction rates. However, some recent attempts to reproduce infrared strong coupling results have not been successful, suggesting that factors other than strong coupling may sometimes be involved. Here we re-examine the first of these vacuum-modified chemistry experiments, in which changes to a molecular photoisomerisation process were attributed to strong coupling of the molecules to visible light. We observed significant variations in photoisomerisation rates for molecules placed in a variety of optical cavity structures, but found no evidence that these changes need to be attributed to strong coupling. Instead, we suggest that the photoisomerisation rates involved are most strongly influenced by the absorption of ultraviolet radiation in the cavity. Our results indicate that care must be taken to rule out non-polaritonic effects before invoking strong coupling to explain any changes of chemical properties arising in cavity-based experiments.Comment: 31 pages, 16 figure

    Identifying diffuse spatial structures in high-energy photon lists

    Full text link
    Data from high-energy observations are usually obtained as lists of photon events. A common analysis task for such data is to identify whether diffuse emission exists, and to estimate its surface brightness, even in the presence of point sources that may be superposed. We have developed a novel non-parametric event list segmentation algorithm to divide up the field of view into distinct emission components. We use photon location data directly, without binning them into an image. We first construct a graph from the Voronoi tessellation of the observed photon locations and then grow segments using a new adaptation of seeded region growing, that we call Seeded Region Growing on Graph, after which the overall method is named SRGonG. Starting with a set of seed locations, this results in an over-segmented dataset, which SRGonG then coalesces using a greedy algorithm where adjacent segments are merged to minimize a model comparison statistic; we use the Bayesian Information Criterion. Using SRGonG we are able to identify point-like and diffuse extended sources in the data with equal facility. We validate SRGonG using simulations, demonstrating that it is capable of discerning irregularly shaped low surface-brightness emission structures as well as point-like sources with strengths comparable to that seen in typical X-ray data. We demonstrate SRGonG's use on the Chandra data of the Antennae galaxies, and show that it segments the complex structures appropriately

    Millimeter Wave Channel Measurements in a Railway Depot

    Get PDF
    Millimeter wave (mmWave) communication is a key enabling technology with the potential to deliver high capacity, high peak data rate communications for future railway services. Knowledge of the radio characteristics is of paramount importance for the successful deployment of such systems. In this paper mmWave channel measurements are reported for a railway environment using a wideband channel sounder operating at 60GHz. Highly directional antennas are deployed at both ends of the link. Data is reported for path loss, root mean square (RMS) delay spread and K-factor. Static and mobile measurements are considered. Analysis shows that the signal strength is strongly dependent (up to 25dB) on the azimuth orientation of the directional transmit and receive antennas. A path loss exponent of n=2.04 was extracted from the Line-of-Sight measurements with optimally aligned antennas. RMS delay spreads ranged from 1ns to 22ns depending on antenna alignment. 50% of the measured K-factors were found to be less than 6dB. We conclude this is the result of ground reflections in the vertical Tx-Rx plane

    NIRS measurement of O(2) dynamics in contracting blood and buffer perfused hindlimb muscle.

    Get PDF
    金沢大学人間社会研究域人間科学系In order to obtain evidence that Mb releases O(2) during muscle contraction, we have set up a buffer-perfused hindlimb rat model and applied NIRS to detect the dynamics of tissue deoxygenation during contraction. The NIRS signal was monitored on hindlimb muscle during twitch contractions at 1 Hz, evoked via electrostimulator at different submaximal levels. The hindlimb perfusion was carried out by perfusion of Krebs Bicarbonate buffer. The NIRS still detected a strong signal even under Hb-free contractions. The deoxygenation signal (Delta[deoxy]) was progressively increased at onset of the contraction and reached the plateau under both blood- and buffer-perfused conditions. However, the amplitude of Delta[deoxy] during steady state continued to significantly increase as tension increased. The tension-matched comparison of the Delta[deoxy] level under buffer-perfused and blood perfused conditions indicate that Mb can contribute approximately 50% to the NIRS signal. These results clarify the Mb contribution to the NIRS signal and show a falling intracellular PO(2) as workload increases

    Quantification of myoglobin deoxygenation and intracellular partial pressure of O2 during muscle contraction during haemoglobin-free medium perfusion

    Get PDF
    金沢大学人間社会研究域人間科学系Although the O2 gradient regulates O2 flux from the capillary into the myocyte to meet the energy demands of contracting muscle, intracellular O2 dynamics during muscle contraction remain unclear. Our hindlimb perfusion model allows the determination of intracellular myoglobin (Mb) saturation () and intracellular oxygen tension of myoglobin () in contracting muscle using near infrared spectroscopy (NIRS). The hindlimb of male Wistar rats was perfused from the abdominal aorta with a well-oxygenated haemoglobin-free Krebs-Henseleit buffer. The deoxygenated Mb (Δ[deoxy-Mb]) signal was monitored by NIRS. Based on the value of Δ[deoxy-Mb], and were calculated, and the time course was evaluated by an exponential function model. Both and started to decrease immediately after the onset of contraction. The steady-state values of and progressively decreased with relative work intensity or muscle oxygen consumption. At the maximal twitch rate, and were 49% and 2.4 mmHg, respectively. Moreover, the rate of release of O2 from Mb at the onset of contraction increased with muscle oxygen consumption. These results suggest that at the onset of muscle contraction, Mb supplies O2 during the steep decline in, which expands the O2 gradient to increase the O2 flux to meet the increased energy demands. © 2010 The Physiological Society

    Transdisciplinary research in support of land and water management in China and Southeast Asia : evaluation of four research projects

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552Transdisciplinary research (TDR) aims at identifying implementable solutions to difficult sustainability problems and at fostering social learning. It requires a wellmanaged collaboration among multidisciplinary scientists and multisectoral stakeholders. Performing TDR is challenging, particularly for foreign researchers working in countries with different institutional and socio-cultural conditions. There is a need to synthesize and share experience among researchers as well as practitioners regarding how TDR can be conducted under specific contexts. In this paper, we aim to evaluate and synthesize our unique experience in conducting TDR projects in Asia. We applied guiding principles of TDR to conduct a formative evaluation of four consortium projects on sustainable land and water management in China, the Philippines, and Vietnam. In all projects, local political conditions restricted the set of stakeholders that could be involved in the research processes. The set of involved stakeholders was also affected by the fact that stakeholders in most cases only participate if they belong to the personal network of the project leaders. Language barriers hampered effective communication between foreign researchers and stakeholders in all projects and thus knowledge integration. The TDR approach and its specific methods were adapted to respond to the specific cultural, social, and political conditions in the research areas, also with the aim to promote trust and interest of the stakeholders throughout the project. Additionally, various measures were implemented to promote collaboration among disciplinary scientists. Based on lessons learned, we provide specific recommendations for the design and implementation of TDR projects in particular in Asia
    corecore