147 research outputs found

    Probing Spin-Polarized Currents in the Quantum Hall Regime

    Full text link
    An experiment to probe spin-polarized currents in the quantum Hall regime is suggested that takes advantage of the large Zeeman-splitting in the paramagnetic diluted magnetic semiconductor zinc manganese selenide (Zn1−x_{1-x}Mnx_xSe). In the proposed experiment spin-polarized electrons are injected by ZnMnSe-contacts into a gallium arsenide (GaAs) two-dimensional electron gas (2DEG) arranged in a Hall bar geometry. We calculated the resulting Hall resistance for this experimental setup within the framework of the Landauer-B\"uttiker formalism. These calculations predict for 100% spininjection through the ZnMnSe-contacts a Hall resistance twice as high as in the case of no spin-polarized injection of charge carriers into a 2DEG for filling factor ν=2\nu=2. We also investigated the influence of the equilibration of the spin-polarized electrons within the 2DEG on the Hall resistance. In addition, in our model we expect no coupling between the contact and the 2DEG for odd filling factors of the 2DEG for 100% spininjection, because of the opposite sign of the g-factors of ZnMnSe and GaAs.Comment: 7 pages, 5 figure

    Charge fluctuations in a quantum point contact attached to a superconducting lead

    Get PDF
    We show how to calculate the charge noise spectrum in a normal mesoscopic conductor, which is capacitively coupled to a macroscopic gate, when this conductor is attached to L normal leads and M superconducting leads, the only restriction being that the superconducting leads must be at the same chemical potential. We then proceed to examine results for a quantum point contact (QPC) in a normal lead connecting to a superconductor. Of interest is the fluctuating current in a gate capacitively coupled to a QPC. The results are compared with the case when all leads are normal. We find a doubling of the equilibrium charge fluctuations and a large enhancement (>2) in the current noise spectrum to first order in |eV|, when a channel in the QPC is opening.Comment: 4 pages, 3 figure

    The Leading Particle Effect from Heavy-Quark Recombination

    Full text link
    The leading particle effect in charm hadroproduction is an enhancement of the cross section for a charmed hadron D in the forward direction of the beam when the beam hadron has a valence parton in common with the D. The large D+/D- asymmetry observed by the E791 experiment is an example of this phenomenon. We show that the heavy-quark recombination mechanism provides an economical explanation for this effect. In particular, the D+/D- asymmetry can be fit reasonably well using a single parameter whose value is consistent with a recent determination from charm photoproduction.Comment: Revtex file, 4 pages, 3 figure

    Quantum shot-noise at local tunneling contacts on mesoscopic multiprobe conductors

    Full text link
    New experiments that measure the low-frequency shot-noise spectrum at local tunneling contacts on mesoscopic structures are proposed. The current fluctuation spectrum at a single tunneling tip is determined by local partial densities of states. The current-correlation spectrum between two tunneling tips is sensitive to non-diagonal density of states elements which are expressed in terms of products of scattering states of the conductor. Thus such an experiment permits to investigate correlations of electronic wave functions. We present specific results for a clean wire with a single barrier and for metallic diffusive conductors.Comment: 4 pages REVTeX, 2 figure

    Unusual conductance collapse in one-dimensional quantum structures

    Full text link
    We report an unusual insulating state in one-dimensional quantum wires with a non-uniform confinement potential. The wires consist of a series of closely spaced split gates in high mobility GaAs/AlGaAs heterostructures. At certain combinations of wire widths, the conductance abruptly drops over three orders of magnitude, to zero on a linear scale. Two types of collapse are observed, one occurring in multi-subband wires in zero magnetic field and one in single subband wires in an in-plane field. The conductance of the wire in the collapse region is thermally activated with an energy of the order of 1 K. At low temperatures, the conductance shows a steep rise beyond a threshold DC source-drain voltage of order 1 mV, indicative of a gap in the density of states. Magnetic depopulation measurements show a decrease in the carrier density with lowering temperature. We discuss these results in the context of many-body effects such as charge density waves and Wigner crystallization in quantum wires.Comment: 5 pages, 5 eps figures, revte

    Shifting a Quantum Wire through a Disordered Crystal: Observation of Conductance Fluctuations in Real Space

    Full text link
    A quantum wire is spatially displaced by suitable electric fields with respect to the scatterers inside a semiconductor crystal. As a function of the wire position, the low-temperature resistance shows reproducible fluctuations. Their characteristic temperature scale is a few hundred millikelvin, indicating a phase-coherent effect. Each fluctuation corresponds to a single scatterer entering or leaving the wire. This way, scattering centers can be counted one by one.Comment: 4 pages, 3 figure

    Quantum Point Contacts and Coherent Electron Focusing

    Get PDF
    I. Introduction II. Electrons at the Fermi level III. Conductance quantization of a quantum point contact IV. Optical analogue of the conductance quantization V. Classical electron focusing VI. Electron focusing as a transmission problem VII. Coherent electron focusing (Experiment, Skipping orbits and magnetic edge states, Mode-interference and coherent electron focusing) VIII. Other mode-interference phenomenaComment: #3 of a series of 4 legacy reviews on QPC'

    Correlation and symmetry effects in transport through an artificial molecule

    Full text link
    Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, considering cases where the dots connected in series are in general different. The spectral weights allow us to understand the effects of correlations, their connection with selection rules for transport, and the role of excited states in the experimental conductance spectra of these coupled double dot systems (DDS). An extended Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving rise to effective selection rules for conductance through the molecule. Most states are found to make insignificant contributions to the total current for finite biases. We find also that the symmetry of the structure is reflected in the I-V characteristics, and is in qualitative agreement with experiment.Comment: 25 figure files - REVTEX - submitted to PR

    Interaction Effects in a One-Dimensional Constriction

    Full text link
    We have investigated the transport properties of one-dimensional (1D) constrictions defined by split-gates in high quality GaAs/AlGaAs heterostructures. In addition to the usual quantized conductance plateaus, the equilibrium conductance shows a structure close to 0.7(2e2/h)0.7(2e^2/h), and in consolidating our previous work [K.~J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996)] this 0.7 structure has been investigated in a wide range of samples as a function of temperature, carrier density, in-plane magnetic field B∥B_{\parallel} and source-drain voltage VsdV_{sd}. We show that the 0.7 structure is not due to transmission or resonance effects, nor does it arise from the asymmetry of the heterojunction in the growth direction. All the 1D subbands show Zeeman splitting at high B∥B_{\parallel}, and in the wide channel limit the gg-factor is ∣g∣≈0.4\mid g \mid \approx 0.4, close to that of bulk GaAs. As the channel is progressively narrowed we measure an exchange-enhanced gg-factor. The measurements establish that the 0.7 structure is related to spin, and that electron-electron interactions become important for the last few conducting 1D subbands.Comment: 8 pages, 7 figures (accepted in Phys. Rev. B
    • …
    corecore