125,963 research outputs found
Multi-cell battery protection system
A multi-cell battery protection system is described wherein each cell has its own individual protective circuit. The protective circuits consist of a solid state comparator unit and a high current switching device such as a relay. The comparator units each continuously monitor the associated cell and when the cell voltage either exceeds a predetermined high level or falls below a predetermined low level, the relay is actuated whereby a bypass circuit is completed across the cell thereby effectively removing the cell from the series of cells
Testing the Standard Model by precision measurement of the weak charges of quarks
In a global analysis of the latest parity-violating electron scattering
measurements on nuclear targets, we demonstrate a significant improvement in
the experimental knowledge of the weak neutral-current lepton-quark
interactions at low energy. The precision of this new result, combined with
earlier atomic parity-violation measurements, places tight constraints on the
size of possible contributions from physics beyond the Standard Model.
Consequently, this result improves the lower-bound on the scale of relevant new
physics to ~1 TeV.Comment: 4 pages, 3 figures; v2: further details on extraction of electroweak
parameters, new figur
Kinematically redundant robot manipulators
Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques
Extracting nucleon strange and anapole form factors from world data
The complete world set of parity violating electron scattering data up to
Q^2~0.3 GeV^2 is analysed. We extract the current experimental determination of
the strange electric and magnetic form factors of the proton, as well as the
weak axial form factors of the proton and neutron, at Q^2 = 0.1 GeV^2. Within
experimental uncertainties, we find that the strange form factors are
consistent with zero, as are the anapole contributions to the axial form
factors. Nevertheless, the correlation between the strange and anapole
contributions suggest that there is only a small probability that these form
factors all vanish simultaneously.Comment: 4 pages, 3 figs; v2: version to appear in PR
Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies
Dynamical models for 17 Coma early-type galaxies are presented. The galaxy
sample consists of flattened, rotating as well as non-rotating early-types
including cD and S0 galaxies with luminosities between M=-18.79 and M=-22.56.
Kinematical long-slit observations cover at least the major and minor axis and
extend to 1-4 effective radii. Axisymmetric Schwarzschild models are used to
derive stellar mass-to-light ratios and dark halo parameters. In every galaxy
models with a dark matter halo match the data better than models without. The
statistical significance is over 95 percent for 8 galaxies, around 90 percent
for 5 galaxies and for four galaxies it is not significant. For the highly
significant cases systematic deviations between observed and modelled
kinematics are clearly seen; for the remaining galaxies differences are more
statistical in nature. Best-fit models contain 10-50 percent dark matter inside
the half-light radius. The central dark matter density is at least one order of
magnitude lower than the luminous mass density. The central phase-space density
of dark matter is often orders of magnitude lower than in the luminous
component, especially when the halo core radius is large. The orbital system of
the stars along the major-axis is slightly dominated by radial motions. Some
galaxies show tangential anisotropy along the minor-axis, which is correlated
with the minor-axis Gauss-Hermite coefficient H4. Changing the balance between
data-fit and regularisation constraints does not change the reconstructed mass
structure significantly. Model anisotropies tend to strengthen if the weight on
regularisation is reduced, but the general property of a galaxy to be radially
or tangentially anisotropic, respectively, does not change. (abridged)Comment: 31 pages, 34 figures; accepted for publication in MNRA
Spatially resolved spectroscopy of Coma cluster early-type galaxies IV. Completing the dataset
The long-slit spectra obtained along the minor axis, offset major axis and
diagonal axis are presented for 12 E and S0 galaxies of the Coma cluster drawn
from a magnitude-limited sample studied before. The rotation curves, velocity
dispersion profiles and the H_3 and H_4 coefficients of the Hermite
decomposition of the line of sight velocity distribution are derived. The
radial profiles of the Hbeta, Mg, and Fe line strength indices are measured
too. In addition, the surface photometry of the central regions of a subsample
of 4 galaxies recently obtained with Hubble Space Telescope is presented. The
data will be used to construct dynamical models of the galaxies and study their
stellar populations.Comment: 40 pages, 7 figures, 6 tables. Accepted for publication in ApJ
Teleprinter uses thermal printing technique
Alphameric/facsimile printer receives serial digital data in the form of a specified number of bits per group and prints it on thermally sensitive paper. A solid state shift-register memorizes the incoming serial digital data
Engaging Students Engaging Industry Engaging Enterprise
A reflective piece on how a small team of students and academics gained more awareness of their own sense of enterprise and creativity. The case study examines the phases and crisis points of the whole event process and identifies some of the key learning outcomes for all involved
Neutron Star Properties with Hyperons
In the light of the recent discovery of a neutron star with a mass accurately
determined to be almost two solar masses, it has been suggested that hyperons
cannot play a role in the equation of state of dense matter in
-equilibrium. We re-examine this issue in the most recent development of
the quark-meson coupling model. Within a relativistic Hartree-Fock approach and
including the full tensor structure at the vector-meson-baryon vertices, we
find that not only must hyperons appear in matter at the densities relevant to
such a massive star but that the maximum mass predicted is completely
consistent with the observation.Comment: Minor correction
- …