737 research outputs found

    Lagrangian model using CFD flow data to predict the current-voltage characteristics of a solid oxide fuel cell repeat unit

    Get PDF
    A model framework is presented to predict the current-voltage (I-U) characteristics and hence the electrical performance of a solid oxide fuel cell (SOFC) repeat unit, i. e., a planar SOFC with adjacent current collector plates. The model uses as input residence times obtained from 3D CFD data for the fuel flowing through the anodic gas channels of a current collector plate. These residence times are then used by an electrochemical model to predict the fuel conversion along different flow paths for various electrical loads. This way, the overall (I-U) behaviour of the repeat unit follows from combining the fuel conversion rates (and respective electrical currents) for the individual flow paths. Since we use a Lagrangian reference frame for the electrochemical model, for a given electrical load, only a simple time-integration of a first-order ODE is required. Therefore, this modelling approach is very efficient and well suited for extensive parameter studies, e. g., to optimise the fuel residence times with respect to the electrical performance of the repeat unit. To ensure its reliability, the model has been validated by comparison with both experimental data and other (I-U) models

    3D microstructure effects in Ni-YSZ anodes : prediction of effective transport properties and optimization of redox stability

    Get PDF
    This study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia) anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 ºC. FIB (focused ion beam)-tomography and image analysis are used to quantify the effective (connected) volume fraction (Φeff), constriction factor (β), and tortuosity (τ). The effective conductivity (σeff) is described as the product of intrinsic conductivity (σ0) and the so-called microstructure-factor (M): σeff = σ0 x M. Two different methods are used to evaluate the M-factor: (1) by prediction using a recently established relationship, Mpred = ε β^0.36/τ^5.17, and (2) by numerical simulation that provides conductivity, from which the simulated M-factor can be deduced (Msim). Both methods give complementary and consistent information about the effective transport properties and the redox degradation mechanism. The initial microstructure has a strong influence on effective conductivities and their degradation. Finer anodes have higher initial conductivities but undergo more intensive Ni coarsening. Coarser anodes have a more stable Ni phase but exhibit lower YSZ stability due to lower sintering activity. Consequently, in order to improve redox stability, it is proposed to use mixtures of fine and coarse powders in different proportions for functional anode and current collector layers

    MoSi2/Al2O3/feldspar composites for injection‐molded ceramic heating elements

    Get PDF
    MoSi2 is an electrically conductive material with numerous applications mostly in high-temperature environments. Herein, the production of MoSi2-containing resistive heating elements by ceramic injection molding (CIM) is described. The sintered parts consist of MoSi2 particles embedded in a matrix of vitrified feldspar and Al2O3. The conductivity of sintered parts can be tuned precisely by varying the content of the conductive phase. For the development of the injection-molding feedstock, four binder systems are evaluated. The corresponding feedstocks are injection molded into different geometries in traditional molds as well as in additively manufactured, soluble molds. For each feedstock, a debinding and sintering routine is elaborated based on thermogravimetric measurements. Higher debinding temperature leads to more oxidation of MoSi2 and less conductive samples. Therefore, the conductivity as well as density of sintered parts is used to evaluate the applicability of the feedstocks. Finally, glow tests prove that MoSi2/Al2O3/feldspar composite parts can be used as heating elements and by combining infrared temperature measurement data with computational simulations important material data such as thermal and electrical conductivity and thermal capacity can be obtained reliably

    Tip60 functions as a potential corepressor of KLF4 in regulation of HDC promoter activity

    Get PDF
    KLF4 is a transcription factor that is highly expressed in the gastrointestinal tract. Previously we have demonstrated that KLF4 represses HDC promoter activity in a gastric cell line through both an upstream Sp1 binding GC box and downstream gastrin responsive elements. However, the mechanism by which KLF4 inhibits HDC promoter is not well defined. In the current study, by using yeast two-hybrid screening, Tip60 was identified as a KLF4 interacting protein. Further coimmunoprecipitation and functional reporter assays support the interaction between these two proteins. In addition, Tip60 and HDAC7, previously shown to interact with each other and repress transcription, inhibited HDC promoter activity in a dose-dependent fashion. Consistently, knock down of Tip60 or HDAC7 gene expression by specific shRNA increased endogenous HDC mRNA level. Co-immunoprecipitation assays showed that HDAC7 was pulled down by KLF4 and Tip60, suggesting that these three proteins form a repressive complex. Further chromatin immuno-precipitation indicated that all three proteins associated with HDC promoter. Two-hour gastrin treatment, known to activate HDC gene expression, significantly decreased the association of KLF4, Tip60 and HDAC7 with HDC promoter, suggesting that gastrin activates HDC gene expression at least partly by decreasing the formation of KLF4/Tip60/HDAC7 repressive complexes at the HDC promoter

    3D microstructure effects in Ni-YSZ anodes : influence of TPB lengths on the electrochemical performance

    Get PDF
    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer

    Ursinus College Alumni Journal, March 1967

    Get PDF
    The paradox of urbia • The joyful acceptance of technopolis • Toward a new kind of freedom • Bill Daniels leads a creative life of action in urbia • Who is educated to plan the urban environment? • From the President • Concerning Freeland Seminary: An alumna writes a history of Collegeville • Discovery in Europe, student style • Personal calls will climax \u2767 Centennial Fund • Candidates for office • Springtime is alumni time • Student magazine focuses on political affairs • A theory of non-interference • From the Perkiomen to the Potomac • In the land of the four 70s • Sporting scene: Wrestling; Indoor track; Cross country; Basketball; Women\u27s hockey; Other women\u27s sports; Scheduling correction • Campus clippings: Financial support; Student lounge a success; Selma sheriff speaks; The amazing Evening School; Questionnaires returned; Book on urbia still available; Honor graduate; Sign to show the way • Class notebook • Physicians Alumni Club of Ursinus College organizes • Weddings • Births • In memoriamhttps://digitalcommons.ursinus.edu/alumnijournal/1088/thumbnail.jp

    Towards model-based optimization of CGO/Ni anodes

    Get PDF
    Gadolinium doped Ceria (CGO) is a promising material for SOFC anodes because of its mixed ionic electronic conductivity, its high catalytic activity for the hydrogen oxidation reaction (HOR) and its robustness against degradation. In SOFC research, electrochemical impedance spectroscopy (EIS) is an essential characterization tool, which serves as a basis for materials optimization on the electrode, cell and stack levels. However, for CGO based electrodes, there is no consensus how to interpret the impedance spectra yet. In the literature, especially the low frequency arc is often either depicted as gas impedance or as chemical capacitance process, without conclusive evidence. Further uncertainties in the interpretation of impedance spectra arise with respect to the operating conditions (especially pO2, pH2O) and to their impact on the HOR resistance. Hence, reliable interpretation of impedance spectra for SOFC with CGO-based anodes requires a detailed model, which captures a) the relevant physico-chemical processes, b) the associated material laws and c) the dependencies on varying operating conditions. In the present contribution, we present an approach for a systematic materials optimization for CGO-based anodes, including EIS measurements, microstructure analysis and finite element modelling with AC and DC mode. The model captures all previously mentioned effects and their impact on the performance of a CGO/Ni-based anode. The computational model is validated and calibrated with EIS-measurements and the impacts of the chemical capacitance and gas impedance on the EIS spectra are illustrated for button cell conditions. The calibrated model is exemplarily used to optimize the CGO/Ni layer thickness. DC results of the extension of the reaction zone are thereby used to understand the different resistive contributions (e.g. from electrochemical conversion, from transport of charge carriers or from gas diffusion) to the total anode impedance. In summary, we present a model-based approach to link bulk material properties, fabrication parameters, microstructure effects and operating conditions with the cell performance on button cell level. Moreover, the model can be extended to different scales like thin film electrodes, used for fundamental material characterization, as well as to large area cells used for industrial devices with stack architecture. By using a stochastic model for virtual structure variation, also the influence of the microstructure can be assessed in a fully digital way (digital materials design). Hence, with the integration of detailed physicochemical properties over different scales into a single model framework, findings from basic and applied research can be directly used for the industrial development, enabling a systematic optimization of SOFC devices

    Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes

    Get PDF
    Mixed ionic and electronic conducting (MIEC) materials recently gained much interest for use as anodes in solid oxide fuel cell (SOFC) applications. However, many processes in MIEC-based porous anodes are still poorly understood and the appropriate interpretation of corresponding electrochemical impedance spectroscopy (EIS) data is challenging. Therefore, a model which is capable to capture all relevant physico-chemical processes is a crucial prerequisite for systematic materials optimization. In this contribution we present a comprehensive model for MIEC-based anodes providing both the DC-behaviour and the EIS-spectra. The model enables one to distinguish between the impact of the chemical capacitance, the reaction resistance, the gas impedance and the charge transport resistance on the EIS-spectrum and therewith allows its appropriate interpretation for button cell conditions. Typical MIEC-features are studied with the model applied to gadolinium doped ceria (CGO) anodes with different microstructures. The results obtained for CGO anodes reveal the spatial distribution of the reaction zone and associated transport distances for the charge carriers and gas species. Moreover, parameter spaces for transport limited and surface reaction limited situations are depicted. By linking bulk material properties, microstructure effects and the cell design with the cell performance, we present a way towards a systematic materials optimization for MIEC-based anodes

    Kaon B Parameter in Quenched QCD

    Full text link
    I calculate the kaon B-parameter with a lattice simulation in quenched approximation. The lattice simulation uses an action possessing exact lattice chiral symmetry, an overlap action. Computations are performed at two lattice spacings, about 0.13 and 0.09 fm (parameterized by Wilson gauge action couplings beta=5.9 and 6.1) with nearly the same physical volumes and quark masses. I describe particular potential difficulties which arise due to the use of such a lattice action in finite volume. My results are consistent with other recent lattice determinations using domain-wall fermions.Comment: 23 pages, Revtex, 16 postscript figure
    • …
    corecore