1,647 research outputs found

    New Longevity Record for Ivory Gulls (Pagophila eburnea) and Evidence of Natal Philopatry

    Get PDF
    Ivory gulls (Pagophila eburnea) have been listed as “endangered” in Canada and “near threatened” interna-tionally. In June 2010, we visited Seymour Island, Nunavut, Canada, where gulls were banded in the 1970s and 1980s. We recaptured and released two breeding gulls banded as chicks in 1983, confirming natal philopatry to this breeding colony. These gulls are more than 28 years old, making the ivory gull one of the longest-living marine bird species known in North America.La mouette blanche (Pagophila eburnea) figure sur la liste des espèces « en voie de disparition » sur la scène canadienne et des espèces « quasi menacées » sur la scène internationale. En juin 2010, nous sommes allés à l’île Seymour, au Nunavut, Canada, où des mouettes avaient été baguées dans le courant des années 1970 et 1980. Nous avons recapturé et relâché deux mouettes reproductrices qui étaient considérées comme des oisillons en 1983, ce qui nous a permis de confirmer la philopatrie natale de cette colonie de nidification. Ces mouettes blanches ont plus de 28 ans, ce qui en fait l’un des oiseaux aquatiques vivant le plus longtemps en Amérique du Nord

    Control of the diffusible hydrogen content in different steel phases through the targeted use of different welding consumables in underwater wet welding

    Get PDF
    Due to the rising number of offshore structures all over the world, underwater wet welding has become increasingly relevant, mainly as a repair method. Welding in direct contact with water involves numerous challenges. A topic focused by many studies is the risk of hydrogen-induced cracking in wet weldments due to hardness values of up to 500 HV 0.2 in the heat-affected zone (HAZ) and high levels of diffusible hydrogen in the weld metal. The risk of cracking increases as the equivalent carbon content rises, because the potential to form martensitic structures within the HAZ rises too. Thus, high-strength steels are especially prone to hydrogen-induced cracking and are considered unsafe for underwater wet repair weldments. © 2020 The Authors. Materials and Corrosion published by Wiley-VCH Gmb

    Subdermal solar energy harvesting – A new way to power autonomous electric implants

    Get PDF
    Subdermal solar harvesting has the potential to obviate the need for the periodic battery replacements as required in patients with cardiac pacemakers. The achievable power output of the subdermal solar module depends on implantation depth, optical skin properties and to an important part on solar cell characteristics. Monte Carlo simulations of light distribution in human skin were used to estimate the power output of subdermal solar cells under midday sunlight exposure in geographical mid-latitudes as a function of implantation depth and solar panel size. For the darkest skin type, the daily energy demand of a modern cardiac pacemaker (0.864 J at a power demand of 10 uW) can be provided by a 2 cm2 solar cell implanted subdermally at a depth of 3 mm when exposed to just 11 min of midday, clear sky irradiance. Our study reveals that solar harvesting with relatively small solar cells if optimized for the spectral subdermal fluence has the potential to power cardiac pacemakers in all skin types within reasonable irradiation exposure times. Solar energy harvesting is very promising to power electronic implants

    Electroweak Symmetry Breaking induced by Dark Matter

    Get PDF
    The mechanism behind Electroweak Symmetry Breaking (EWSB) and the nature of dark matter (DM) are currently among the most important issues in high energy physics. Since a natural dark matter candidate is a weakly interacting massive particle or WIMP, with mass around the electroweak scale, it is clearly of interest to investigate the possibility that DM and EWSB are closely related. In the context of a very simple extension of the Standard Model, the Inert Doublet Model, we show that dark matter could play a crucial role in the breaking of the electroweak symmetry. In this model, dark matter is the lightest component of an inert scalar doublet. The coupling of the latter with the Standard Model Higgs doublet breaks the electroweak symmetry at one-loop, "a la Coleman-Weinberg". The abundance of dark matter, the breaking of the electroweak symmetry and the constraints from electroweak precision measurements can all be accommodated by imposing an (exact or approximate) custodial symmetry.Comment: 4 pages, no figure, one tabl

    Directed geometrical worm algorithm applied to the quantum rotor model

    Full text link
    We discuss the implementation of a directed geometrical worm algorithm for the study of quantum link-current models. In this algorithm Monte Carlo updates are made through the biased reptation of a worm through the lattice. A directed algorithm is an algorithm where, during the construction of the worm, the probability for erasing the immediately preceding part of the worm, when adding a new part,is minimal. We introduce a simple numerical procedure for minimizing this probability. The procedure only depends on appropriately defined local probabilities and should be generally applicable. Furthermore we show how correlation functions, C(r,tau) can be straightforwardly obtained from the probability of a worm to reach a site (r,tau) away from its starting point independent of whether or not a directed version of the algorithm is used. Detailed analytical proofs of the validity of the Monte Carlo algorithms are presented for both the directed and un-directed geometrical worm algorithms. Results for auto-correlation times and Green functions are presented for the quantum rotor model.Comment: 11 pages, 9 figures, v2 : Additional results and data calculated at an incorrect chemical potential replaced. Conclusions unchange

    Cationic lipid-based nanoparticles mediate functional delivery of acetate to tumor cells in vivo leading to significant anticancer effects

    Get PDF
    Metabolic reengineering using nanoparticle delivery represents an innovative therapeutic approach to normalizing the deregulation of cellular metabolism underlying many diseases, including cancer. Here, we demonstrated a unique and novel application to the treatment of malignancy using a short-chain fatty acid (SCFA)-encapsulated lipid-based delivery system – liposome-encapsulated acetate nanoparticles for cancer applications (LITA-CAN). We assessed chronic in vivo administration of our nanoparticle in three separate murine models of colorectal cancer. We demonstrated a substantial reduction in tumor growth in the xenograft model of colorectal cancer cell lines HT-29, HCT-116 p53+/+ and HCT-116 p53-/-. Nanoparticle-induced reductions in histone deacetylase gene expression indicated a potential mechanism for these anti-proliferative effects. Together, these results indicated that LITA-CAN could be used as an effective direct or adjunct therapy to treat malignant transformation in vivo

    Phylogeny of the Clusioid Clade (Malpighiales): Evidence from the Plastid and Mitochonrial Genomes

    Get PDF
    • Premise of the study : The clusioid clade includes five families (i.e., Bonnetiaceae, Calophyllaceae, Clusiaceae s.s., Hypericaceae, and Podostemaceae) represented by 94 genera and ~1900 species. Species in this clade form a conspicuous element of tropical forests worldwide and are important in horticulture, timber production, and pharmacology. We conducted a taxon-rich multigene phylogenetic analysis of the clusioids to clarify phylogenetic relationships in this clade. • Methods : We analyzed plastid ( matK , ndhF , and rbcL ) and mitochondrial ( matR ) nucleotide sequence data using parsimony, maximum likelihood, and Bayesian inference. Our combined data set included 194 species representing all major clusioid subclades, plus numerous species spanning the taxonomic, morphological, and biogeographic breadth of the clusioid clade. • Key results : Our results indicate that Tovomita (Clusiaceae s.s.), Harungana and Hypericum (Hypericaceae), and Ledermanniella s.s. and Zeylanidium (Podostemaceae) are not monophyletic. In addition, we place four genera that have not been included in any previous molecular study: Ceratolacis , Diamantina , and Griffi thella (Podostemaceae), and Santomasia (Hypericaceae). Finally, our results indicate that Lianthus , Santomasia , Thornea , and Triadenum can be safely merged into Hypericum (Hypericaceae). • Conclusions : We present the first well-resolved, taxon-rich phylogeny of the clusioid clade. Taxon sampling and resolution within the clade are greatly improved compared to previous studies and provide a strong basis for improving the classification of the group. In addition, our phylogeny will form the foundation for our future work investigating the biogeography of tropical angiosperms that exhibit Gondwanan distributions. DOI:10.3732/ajb.100035

    In this Issue

    Get PDF
    Aim: Molluscivorous shorebirds supposedly developed their present wintering distribution after the last ice age. Currently, molluscivorous shorebirds are abundant on almost all shores of the world, except for those in the Indo-West Pacific (IWP). Long before shorebirds arrived on the scene, molluscan prey in the IWP evolved strong anti-predation traits in a prolonged evolutionary arms race with durophagous predators including brachyuran crabs. Here, we investigate whether the absence of molluscivorous shorebirds from a site in Oman can be explained by the molluscan community being too well-defended. Location: The intertidal mudflats of Barr Al Hikman, Oman. Methods: Based on samples from 282 locations across the intertidal area the standing stock of the macrozoobenthic community was investigated. By measuring anti-predation traits (burrowing depth, size and strength of armour), the fraction of molluscs available to molluscivorous shorebirds was calculated. Results: Molluscs dominated the macrozoobenthic community at Barr Al Hikman. However, less than 17% of the total molluscan biomass was available to shorebirds. Most molluscs were unavailable either because of their hard-to-crush shells, or because they lived too deeply in the sediment. Repair scars and direct observations confirmed crab predation on molluscs. Although standing stock densities of the Barr Al Hikman molluscs were of the same order of magnitude as at intertidal mudflat areas where molluscivorous shorebirds are abundant, the molluscan biomass available to shorebirds was distinctly lower at Barr Al Hikman. Main conclusions: The established strong molluscan anti-predation traits against crabs precludes molluscan exploitation by shorebirds at Barr Al Hikman. This study exemplifies that dispersal of "novel" predators is hampered in areas where native predators and prey exhibit strongly developed attack and defence mechanisms, and highlights that evolutionary arms races can have consequences for the global distribution of species

    Smeared phase transition in a three-dimensional Ising model with planar defects: Monte-Carlo simulations

    Get PDF
    We present results of large-scale Monte Carlo simulations for a three-dimensional Ising model with short range interactions and planar defects, i.e., disorder perfectly correlated in two dimensions. We show that the phase transition in this system is smeared, i.e., there is no single critical temperature, but different parts of the system order at different temperatures. This is caused by effects similar to but stronger than Griffiths phenomena. In an infinite-size sample there is an exponentially small but finite probability to find an arbitrary large region devoid of impurities. Such a rare region can develop true long-range order while the bulk system is still in the disordered phase. We compute the thermodynamic magnetization and its finite-size effects, the local magnetization, and the probability distribution of the ordering temperatures for different samples. Our Monte-Carlo results are in good agreement with a recent theory based on extremal statistics.Comment: 9 pages, 6 eps figures, final version as publishe
    • …
    corecore