37 research outputs found

    Corneal Inflammation After Miniature Keratoprosthesis Implantation

    Get PDF
    Citation: Crnej A, Omoto M, Dohlman TH, Dohlman CH, Dana R. Corneal inflammation after miniature keratoprosthesis implantation. Invest Ophthalmol Vis Sci

    Effect of Penetrating Keratoplasty and Keratoprosthesis Implantation on the Posterior Segment of the Eye

    Get PDF
    Citation:Črnej A, Omoto M, Dohlman TH, et al. Effect of penetrating keratoplasty and keratoprosthesis implantation on the posterior segment of the eye. Invest Ophthalmol Vis Sci. 2016;57:164357: -164857: . DOI:10.1167 PURPOSE. To compare the effects of post-penetrating keratoplasty (PK) and post-keratoprosthesis (KPro) surgery-related inflammation on the posterior segment of the eye and to assess inhibition of tumor necrosis factor alpha (TNFa) and interleukin-1 beta (IL-1b) on these effects. METHODS. BALB/C (syngeneic) or C57BL/6 (allogeneic) corneas were transplanted onto BALB/ C host beds as part of PK or miniature KPro (m-KPro) implantation. Intraocular pressure (IOP) was measured via an intracameral pressure sensor; tissues were harvested and analyzed 8 weeks after surgery. Expression of TNFa and IL-1b in the retina was analyzed using real-time quantitative (q)PCR. Optic nerve degeneration (axon count, circularity, and area) was assessed quantitatively using ImageJ software. After m-KPro implantation, mice were treated with saline, anti-TNFa, or anti-IL-1b antibody, and axonal loss was assessed after 10 weeks. RESULTS. Mean IOP was within normal limits in the operated and fellow eyes in all groups. The mRNA expression of TNFa and IL-1b was highest in m-KPro groups with either syngeneic or an allogeneic carrier. We observed optic nerve degeneration in both allogeneic PK and mKPro implanted eyes with an allogeneic carrier. However, TNFa blockade significantly reduced axonal loss by 35%. CONCLUSIONS. Allogeneic PK and m-KPro implants with an allogeneic carrier lead to chronic inflammation in the posterior segment of the eye, resulting in optic nerve degeneration. In addition, blockade of TNFa prevents axonal degeneration in this preclinical model of allogeneic m-KPro (alloKPro) implantation

    Holocene sea level fluctuations and coastal evolution in the central Algarve (southern Portugal)

    Get PDF
    In Armação de Pêra Bay, southern Portugal, environmental changes during the Holocene can be interpreted based on the morphological and sedimentological similarities between older geomorphic features (cemented beach and dune rocks) and present coastal features. Using knowledge of the present beach and dune processes, we propose a two-step model for the evolution of Armação de Pêra Bay. First, during the rapid sea level rise between about 8800 and 6600 yr cal BP, the bay changed from a positive to a negative budget littoral cell and transgressive dunes formed, favoured by drought conditions. At about 5000 yr cal BP, during a sea level maximum, beach width was less than the critical fetch and dunes stabilized and underwent cementation during the wetter Atlantic climatic event. The second phase of dune accumulation started at about 3200 yr cal BP, due to a regression of sea level during which the bay changed back to a positive budget littoral cell in which beach width was greater than the critical fetch. Currently, the beach width is less than the critical fetch, dunes are inactive, and the sedimentary budget is negative due to sediment storage in local river systems.Fundação para a Ciência e a Tecnologia. FEDER, and OE (Project POCTI/CTA/34162/2000

    Regulation of microRNA biogenesis and turnover by animals and their viruses

    Get PDF
    Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes

    Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies

    Get PDF
    The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway
    corecore