2,794 research outputs found
Cell cycle regulation of a Xenopus Wee1-like kinase
Using a polymerase chain reaction-based strategy, we have isolated a gene encoding a Wee1-like kinase from Xenopus eggs. The recombinant Xenopus Wee1 protein efficiently phosphorylates Cdc2 exclusively on Tyr- 15 in a cyclin-dependent manner. The addition of exogenous Wee1 protein to Xenopus cell cycle extracts results in a dose-dependent delay of mitotic initiation that is accompanied by enhanced tyrosine phosphorylation of Cdc2. The activity of the Wee1 protein is highly regulated during the cell cycle: the interphase, underphosphorylated form of Wee1 (68 kDa) phosphorylates Cdc2 very efficiently, whereas the mitotic, hyperphosphorylated version (75 kDa) is weakly active as a Cdc2-specific tyrosine kinase. The down-modulation of Wee1 at mitosis is directly attributable to phosphorylation, since dephosphorylation with protein phosphatase 2A restores its kinase activity. During interphase, the activity of this Wee1 homolog does not vary in response to the presence of unreplicated DNA. The mitosis-specific phosphorylation of Wee1 is due to at least two distinct kinases: the Cdc2 protein and another activity (kinase X) that may correspond to an MPM-2 epitope kinase. These studies indicate that the down-regulation of Wee1-like kinase activity at mitosis is a multistep process that occurs after other biochemical reactions have signaled the successful completion of S phase
CPA performance view services : a practitioner\u27s guide to providing performance measurement engagements
https://egrove.olemiss.edu/aicpa_guides/1758/thumbnail.jp
Recent Decisions
Comments on recent decisions by Walter B. Bieschke, Thomas Broden, John C. Castelli, Edward G. Coleman, Louis F. DiGiovanni, John L. Globensky, John H. O\u27Hara, L. G. Sculthorp, and Joseph V. Wilcox
SOST Inhibits Prostate Cancer Invasion.
Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings
Goserelin, as an ovarian protector during (neo)adjuvant breast cancer chemotherapy, prevents long term altered bone turnover
Background: The Ovarian Protection Trial In Premenopausal Breast Cancer Patients “OPTION” trial
(NCT00427245) was a prospective, multicenter, randomised, open label study evaluating the frequency of
primary ovarian insufficiency (POI) at 12 months in women randomised to 6–8 cycles of (neo)adjuvant
chemotherapy (CT) þ/ goserelin (G). Here we report the results of a secondary endpoint analysis of the
effects of CTþ/-G on markers of bone turnover.
Methods: Serum for bone alkaline phosphatase (BALP) and urine for N-terminal telopeptide (NTX) were
collected at baseline, 6, 12, 18, 24 and 36 months. Changes in median levels of bone turnover markers
were evaluated for the overall population, according to age stratification at randomisation (r40 vs 440
years) and with exploratory analysis according to POI rates at 12 months.
Results: In the overall population, there was a significant increase in NTX at 6 months compared to
baseline in patients treated with CTþG (40.81 vs 57.82 p¼0.0074) with normalisation of levels thereafter.
BALP was significantly increased compared to baseline at 6 months and 12 months in those receiving
CTþG, but normalised thereafter. BALP remained significantly higher compared to baseline at 12, 24 and
36 months in patients receiving CT, resulting in a significant difference between treatment groups at 36
months (CTþG 5.845 vs CT 8.5 p¼0.0006). These changes were predominantly seen in women 440
years. Women with POI at 12 months showed altered bone formation compared to baseline levels for a
longer duration than women who maintained menses.
Conclusion: Addition of G to CT increases bone turnover during treatment with normalisation after
cessation of treatment suggesting G may offer sufficient ovarian protection against CT induced POI to
negate longstanding altered bone turnover associated with POI
Renormalization Group Functional Equations
Functional conjugation methods are used to analyze the global structure of
various renormalization group trajectories, and to gain insight into the
interplay between continuous and discrete rescaling. With minimal assumptions,
the methods produce continuous flows from step-scaling {\sigma} functions, and
lead to exact functional relations for the local flow {\beta} functions, whose
solutions may have novel, exotic features, including multiple branches. As a
result, fixed points of {\sigma} are sometimes not true fixed points under
continuous changes in scale, and zeroes of {\beta} do not necessarily signal
fixed points of the flow, but instead may only indicate turning points of the
trajectories.Comment: A physical model with a limit cycle added as section IV, along with
reference
DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology
Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NAS
Tailored for Real-World: A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload.
Standard of care diagnostic procedure for suspected skin cancer is microscopic examination of hematoxylin & eosin stained tissue by a pathologist. Areas of high inter-pathologist discordance and rising biopsy rates necessitate higher efficiency and diagnostic reproducibility. We present and validate a deep learning system which classifies digitized dermatopathology slides into 4 categories. The system is developed using 5,070 images from a single lab, and tested on an uncurated set of 13,537 images from 3 test labs, using whole slide scanners manufactured by 3 different vendors. The system\u27s use of deep-learning-based confidence scoring as a criterion to consider the result as accurate yields an accuracy of up to 98%, and makes it adoptable in a real-world setting. Without confidence scoring, the system achieved an accuracy of 78%. We anticipate that our deep learning system will serve as a foundation enabling faster diagnosis of skin cancer, identification of cases for specialist review, and targeted diagnostic classifications
Beyond locutionary denotations: exploring trust between practitioners and policy
This study reports the findings of a research on the trust relationship between practitioners in the Skills for Life (SfL) area and the policy that informs their practice. The exploration of this relationship was premised on an extended notion of trust relationship which draws from the Speech Act theory of Austin (1962; Searle 1969; Kissine 2008), leading to the claim that the existence of different layers of imports in textual analysis makes it possible for a trust relationship to exist between the human/physical and the non human/non physical. The study found that the majority of practitioners in the SfL field trust policy to deliver its inherent policy only to a limited extent. Amongst others, the study identified the impact of the perlocutionary import of policy text on practitioners as a viable reason for this limited level of trust. Such perlocutionary imports, it also found, have adverse impact on practitioners who are considered to have drawn from previous experience to mediate the import of contemporary policies
HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology
Mathematical models and simulations are important tools in discovering key causal relationships governing physiological processes. Simulations guide and improve outcomes of medical interventions involving complex physiology. We developed HumMod, a Windows-based model of integrative human physiology. HumMod consists of 5000 variables describing cardiovascular, respiratory, renal, neural, endocrine, skeletal muscle, and metabolic physiology. The model is constructed from empirical data obtained from peer-reviewed physiological literature. All model details, including variables, parameters, and quantitative relationships, are described in Extensible Markup Language (XML) files. The executable (HumMod.exe) parses the XML and displays the results of the physiological simulations. The XML description of physiology in HumMod's modeling environment allows investigators to add detailed descriptions of human physiology to test new concepts. Additional or revised XML content is parsed and incorporated into the model. The model accurately predicts both qualitative and quantitative changes in clinical and experimental responses. The model is useful in understanding proposed physiological mechanisms and physiological interactions that are not evident, allowing one to observe higher level emergent properties of the complex physiological systems. HumMod has many uses, for instance, analysis of renal control of blood pressure, central role of the liver in creating and maintaining insulin resistance, and mechanisms causing orthostatic hypotension in astronauts. Users simulate different physiological and pathophysiological situations by interactively altering numerical parameters and viewing time-dependent responses. HumMod provides a modeling environment to understand the complex interactions of integrative physiology. HumMod can be downloaded at http://hummod.or
- …