33 research outputs found

    Dopamine-independent effect of rewards on choices through hidden-state inference

    Get PDF
    Dopamine is implicated in adaptive behavior through reward prediction error (RPE) signals that update value estimates. There is also accumulating evidence that animals in structured environments can use inference processes to facilitate behavioral flexibility. However, it is unclear how these two accounts of reward-guided decision-making should be integrated. Using a two-step task for mice, we show that dopamine reports RPEs using value information inferred from task structure knowledge, alongside information about reward rate and movement. Nonetheless, although rewards strongly influenced choices and dopamine activity, neither activating nor inhibiting dopamine neurons at trial outcome affected future choice. These data were recapitulated by a neural network model where cortex learned to track hidden task states by predicting observations, while basal ganglia learned values and actions via RPEs. This shows that the influence of rewards on choices can stem from dopamine-independent information they convey about the world’s state, not the dopaminergic RPEs they produce

    Open-source, Python-based, hardware and software for controlling behavioural neuroscience experiments

    Get PDF
    Laboratory behavioural tasks are an essential research tool. As questions asked of behaviour and brain activity become more sophisticated, the ability to specify and run richly structured tasks becomes more important. An increasing focus on reproducibility also necessitates accurate communication of task logic to other researchers. To these ends, we developed pyControl, a system of open-source hardware and software for controlling behavioural experiments comprising a simple yet flexible Python-based syntax for specifying tasks as extended state machines, hardware modules for building behavioural setups, and a graphical user interface designed for efficiently running high-throughput experiments on many setups in parallel, all with extensive online documentation. These tools make it quicker, easier, and cheaper to implement rich behavioural tasks at scale. As important, pyControl facilitates communication and reproducibility of behavioural experiments through a highly readable task definition syntax and self-documenting features. Here, we outline the system’s design and rationale, present validation experiments characterising system performance, and demonstrate example applications in freely moving and head-fixed mouse behaviour

    Oscillation structure determines communication accuracy.

    No full text
    <p>(<i>A</i>–<i>D</i>) Example firing rate modulation of the target (red) and distracting inputs (gray) over the 100 ms integration time. Gain modulation (blue) produced by the optimized receiving network. (<i>E</i>) Firing rate as a function of oscillation phase for synchronization strengths from 0.1–0.9. (<i>F</i>) Fisher information as a function of the synchronization strength of the target input for stimulus estimates decoded from receiving network output integrated over 100 ms. Distractor condition indicated by color as shown in key. (<i>G</i>) Comparison of Fisher information for asynchronous and incoherently oscillating distracting inputs as functions of firing rate of input networks. (<i>H</i>) Separation of target and distractors in frequency. Fisher information as function of oscillation frequency of distractor networks for narrowband (purple) and broadband (orange) sinusoidal oscillations and narrowband Von Mises oscillations (blue). Frequency of target input modulation (50 Hz) is indicated by black arrow. (<i>I</i>) Amplitude spectrum of oscillatory modulations for narrowband Von Mises modulation and narrow and broadband sinusoidal oscillations (F<sub>0</sub> is oscillation center frequency).</p

    Integration time, modulation frequency and communication accuracy.

    No full text
    <p>(A–D) Fisher information as a function of integration time. Target modulation frequency is indicated by line color (see key). For incoherent distractors (A) and phase separation (D) conditions, distractor frequency was the same as target frequency. For frequency separation condition (C), distractor frequency is indicated by line style (see key). The duration of one period of the target input modulation is indicated by the vertical dashed lines, color coded by target modulation frequency.</p

    Bottom-up coherence.

    No full text
    <p>(<i>A</i>) Diagram illustrating receiving network in which gain modulation is a filtered version of the summed combined spike input. (<i>B</i>–<i>E</i>) Comparison of Fisher information of decoded stimulus estimates for original ‘top-down’ model (solid lines) and ‘bottom-up’ model (dashed lines).</p

    Filtering with arbitrary gain modulations.

    No full text
    <p>(A–D) Example input firing rate modulations, gain modulations generated by optimized linear filter (blue trace), and gain modulations found to optimize decoding accuracy for specific examples of target firing rate modulation (green traces). (E) Effect of synchronization strength on decoding accuracy for asynchronous distractors (blue), distractors oscillating incoherently in the same frequency band as the target (red) and distractors oscillating coherently with the target but equally space in phase (yellow). (F) Effect of distractor frequency on decoding accuracy. (G) Comparison of decoding accuracy for different distractor conditions indicated by color as above for synchronization strength of 0.5 and average neuronal firing rate of 5 Hz.</p

    Complementary task representations in hippocampus and prefrontal cortex for generalizing the structure of problems

    No full text
    Humans and other animals effortlessly generalize prior knowledge to solve novel problems, by abstracting common structure and mapping it onto new sensorimotor specifics. To investigate how the brain achieves this, in this study, we trained mice on a series of reversal learning problems that shared the same structure but had different physical implementations. Performance improved across problems, indicating transfer of knowledge. Neurons in medial prefrontal cortex (mPFC) maintained similar representations across problems despite their different sensorimotor correlates, whereas hippocampal (dCA1) representations were more strongly influenced by the specifics of each problem. This was true for both representations of the events that comprised each trial and those that integrated choices and outcomes over multiple trials to guide an animal’s decisions. These data suggest that prefrontal cortex and hippocampus play complementary roles in generalization of knowledge: PFC abstracts the common structure among related problems, and hippocampus maps this structure onto the specifics of the current situation

    Distinct roles for dopamine clearance mechanisms in regulating behavioral flexibility

    No full text
    Dopamine plays a crucial role in adaptive behavior, and dysfunctional dopamine is implicated in multiple psychiatric conditions characterized by inflexible or inconsistent choices. However, the precise relationship between dopamine and flexible decision making remains unclear. One reason is that, while many studies have focused on the activity of dopamine neurons, efficient dopamine signaling also relies on clearance mechanisms, notably the dopamine transporter (DAT), which predominates in striatum, and catechol-O-methyltransferase (COMT), which predominates in cortex. The exact locus, extent, and timescale of the effects of DAT and COMT are uncertain. Moreover, there is limited data on how acute disruption of either mechanism affects flexible decision making strategies mediated by cortico-striatal networks. To address these issues, we combined pharmacological modulation of DAT and COMT with electrochemistry and behavior in mice. DAT blockade, but not COMT inhibition, regulated sub-second dopamine release in the nucleus accumbens core, but surprisingly neither clearance mechanism affected evoked release in prelimbic cortex. This was not due to a lack of sensitivity, as both amphetamine and atomoxetine changed the kinetics of sub-second release. In a multi-step decision making task where mice had to respond to reversals in either reward probabilities or the choice sequence to reach the goal, DAT blockade selectively impaired, and COMT inhibition improved, performance after reward reversals, but neither manipulation affected the adaptation of choices after action-state transition reversals. Together, our data suggest that DAT and COMT shape specific aspects of behavioral flexibility by regulating different aspects of the kinetics of striatal and cortical dopamine, respectively
    corecore