74,178 research outputs found

    Progress in resolving charge symmetry violation in nucleon structure

    Full text link
    Recent work unambiguously resolves the level of charge symmetry violation in moments of parton distributions using 2+1-flavor lattice QCD. We introduce the methods used for that analysis by applying them to determine the strong contribution to the proton-neutron mass difference. We also summarize related work which reveals that the fraction of baryon spin which is carried by the quarks is in fact structure-dependent rather than universal across the baryon octet.Comment: 8 pages, 4 figures; presented at "The Seventh International Symposium on Chiral Symmetry in Hadrons and Nuclei", BeiHang Univ. Beijing, Chin

    Updated Analysis of the Mass of the H Dibaryon from Lattice QCD

    Full text link
    Recent lattice QCD calculations from the HAL and NPLQCD Collaborations have reported evidence for the existence of a bound state with strangeness -2 and baryon number 2 at quark masses somewhat higher than the physical values. A controlled chiral extrapolation of these lattice results to the physical point suggested that the state, identified with the famed H dibaryon, is most likely slightly unbound (by 13 ±\pm 14 MeV) with respect to the Λ−−Λ\Lambda--\Lambda threshold. We report the results of an updated analysis which finds the H unbound by 26 ±\pm 11 MeV. Apart from the insight it would give us into how QCD is realized in Nature, the H is of great interest because of its potential implications for the equation of state of dense matter and studies of neutron stars. It may also explain the enhancement above the Λ−−Λ\Lambda--\Lambda threshold already reported experimentally. It is clearly of great importance that the latter be pursued in experiments at the new J-PARC facility.Comment: Invited presentation at APPC12 (12th Asia Pacific Physics Conference), July 14-19, 2013, Chiba, Japa

    Sigma terms from an SU(3) chiral extrapolation

    Full text link
    We report a new analysis of lattice simulation results for octet baryon masses in 2+1-flavor QCD, with an emphasis on a precise determination of the strangeness nucleon sigma term. A controlled chiral extrapolation of a recent PACS-CS Collaboration data set yields baryon masses which exhibit remarkable agreement both with experimental values at the physical point and with the results of independent lattice QCD simulations at unphysical meson masses. Using the Feynman-Hellmann relation, we evaluate sigma commutators for all octet baryons. The small statistical uncertainty, and considerably smaller model-dependence, allows a signifcantly more precise determination of the pion-nucleon sigma commutator and the strangeness sigma term than hitherto possible, namely {\sigma}{\pi}N=45 \pm 6 MeV and {\sigma}s = 21 \pm 6 MeV at the physical point.Comment: 4 pages, 4 figure

    Interaction-assisted propagation of Coulomb-correlated electron-hole pairs in disordered semiconductors

    Full text link
    A two-band model of a disordered semiconductor is used to analyze dynamical interaction induced weakening of localization in a system that is accessible to experimental verification. The results show a dependence on the sign of the two-particle interaction and on the optical excitation energy of the Coulomb-correlated electron-hole pair.Comment: 4 pages and 3 ps figure

    Implementation of ILLIAC 4 algorithms for multispectral image interpretation

    Get PDF
    Research has focused on the design and partial implementation of a comprehensive ILLIAC software system for computer-assisted interpretation of multispectral earth resources data such as that now collected by the Earth Resources Technology Satellite. Research suggests generally that the ILLIAC 4 should be as much as two orders of magnitude more cost effective than serial processing computers for digital interpretation of ERTS imagery via multivariate statistical classification techniques. The potential of the ARPA Network as a mechanism for interfacing geographically-dispersed users to an ILLIAC 4 image processing facility is discussed

    Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes.

    Get PDF
    Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids

    Assumptions that imply quantum dynamics is linear

    Full text link
    A basic linearity of quantum dynamics, that density matrices are mapped linearly to density matrices, is proved very simply for a system that does not interact with anything else. It is assumed that at each time the physical quantities and states are described by the usual linear structures of quantum mechanics. Beyond that, the proof assumes only that the dynamics does not depend on anything outside the system but must allow the system to be described as part of a larger system. The basic linearity is linked with previously established results to complete a simple derivation of the linear Schrodinger equation. For this it is assumed that density matrices are mapped one-to-one onto density matrices. An alternative is to assume that pure states are mapped one-to-one onto pure states and that entropy does not decrease.Comment: 10 pages. Added references. Improved discussion of equations of motion for mean values. Expanded Introductio

    Particle-particle and quasiparticle random phase approximations: Connections to coupled cluster theory

    Get PDF
    We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a correct bosonization in the sense that the wavefunction and Hilbert space are exactly fermionic. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA an d qp-RPA equations are textbook material in nuclear structure physics but are largely unknown in quantum chemistry, where particle number fluctuations and Bogoliubov determinants are rarely used. We believe that the ideas and connections discussed in this paper may help design improved ways of incorporating RPA correlation into density functionals based on a CC perspective

    The Quantum Mechanics of Hyperion

    Full text link
    This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76, 186 (1998)] that the chaotic tumbling of the satellite Hyperion would become non-classical within 20 years, but for the effects of environmental decoherence. The dynamics of quantum and classical probability distributions are compared for a satellite rotating perpendicular to its orbital plane, driven by the gravitational gradient. The model is studied with and without environmental decoherence. Without decoherence, the maximum quantum-classical (QC) differences in its average angular momentum scale as hbar^{2/3} for chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC differences for a macroscopic object like Hyperion. The quantum probability distributions do not approach their classical limit smoothly, having an extremely fine oscillatory structure superimposed on the smooth classical background. For a macroscopic object, this oscillatory structure is too fine to be resolved by any realistic measurement. Either a small amount of smoothing (due to the finite resolution of the apparatus) or a very small amount of environmental decoherence is sufficient ensure the classical limit. Under decoherence, the QC differences in the probability distributions scale as (hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that decoherence is not essential to explain the classical behavior of macroscopic bodies.Comment: 17 pages, 24 figure

    Edge Electron Gas

    Full text link
    The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges. In its place we put forward the appropriate concept of the edge electron gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in title,text and figure
    • …
    corecore