6,811 research outputs found

    FTY720 (fingolimod) modulates the severity of viral-induced encephalomyelitis and demyelination.

    Get PDF
    BackgroundFTY720 (fingolimod) is the first oral drug approved by the Food and Drug Administration for treatment of patients with the relapsing-remitting form of the human demyelinating disease multiple sclerosis. Evidence suggests that the therapeutic benefit of FTY720 occurs by preventing the egress of lymphocytes from lymph nodes thereby inhibiting the infiltration of disease-causing lymphocytes into the central nervous system (CNS). We hypothesized that FTY720 treatment would affect lymphocyte migration to the CNS and influence disease severity in a mouse model of viral-induced neurologic disease.MethodsMice were infected intracranially with the neurotropic JHM strain of mouse hepatitis virus. Infected animals were treated with increasing doses (1, 3 and 10 mg/kg) of FTY720 and morbidity and mortality recorded. Infiltration of inflammatory virus-specific T cells (tetramer staining) into the CNS of FTY720-treated mice was determined using flow cytometry. The effects of FTY720 treatment on virus-specific T cell proliferation, cytokine production and cytolytic activity were also determined. The severity of neuroinflammation and demyelination in FTY720-treated mice was examined by flow cytometry and histopathologically, respectively, in the spinal cords of the mice.ResultsAdministration of FTY720 to JHMV-infected mice resulted in increased clinical disease severity and mortality. These results correlated with impaired ability to control viral replication (P < 0.05) within the CNS at days 7 and 14 post-infection, which was associated with diminished accumulation of virus-specific CD4+ and CD8+ T cells (P < 0.05) into the CNS. Reduced neuroinflammation in FTY720-treated mice correlated with increased retention of T lymphocytes within draining cervical lymph nodes (P < 0.05). Treatment with FTY720 did not affect virus-specific T cell proliferation, expression of IFN-γ, TNF-α or cytolytic activity. FTY720-treated mice exhibited a reduction in the severity of demyelination associated with dampened neuroinflammation.ConclusionThese findings indicate that FTY720 mutes effective anti-viral immune responses through impacting migration and accumulation of virus-specific T cells within the CNS during acute viral-induced encephalomyelitis. FTY720 treatment reduces the severity of neuroinflammatory-mediated demyelination by restricting the access of disease-causing lymphocytes into the CNS but is not associated with viral recrudescence in this model

    IFN-gamma-mediated suppression of coronavirus replication in glial-committed progenitor cells.

    Get PDF
    The neurotropic JHM strain of mouse hepatitis virus (JHMV) replicates primarily within glial cells following intracranial inoculation of susceptible mice, with relative sparing of neurons. This study demonstrates that glial cells derived from neural progenitor cells are susceptible to JHMV infection and that treatment of infected cells with IFN-gamma inhibits viral replication in a dose-dependent manner. Although type I IFN production is muted in JHMV-infected glial cultures, IFN-beta is produced following IFN-gamma-treatment of JHMV-infected cells. Also, direct treatment of infected glial cultures with recombinant mouse IFN-alpha or IFN-beta inhibits viral replication. IFN-gamma-mediated control of JHMV replication is dampened in glial cultures derived from the neural progenitor cells of type I receptor knock-out mice. These data indicate that JHMV is capable of infecting glial cells generated from neural progenitor cells and that IFN-gamma-mediated control of viral replication is dependent, in part, on type I IFN secretion

    Soluble CD40 ligand can replace the normal T cell-derived CD40 ligand signal to B cells in T cell-dependent activation

    Get PDF
    We have constructed a soluble chimeric fusion protein between the mouse CD8 alpha chain and the mouse CD40 T cell ligand. This protein binds to both human and mouse B cells. By itself it induced a modest degree of B cell proliferation, but together with anti-immunoglobulin (anti-Ig) antibody it greatly stimulated B cell proliferation, as determined by both [3H]thymidine uptake and increase in cell numbers. These data are evidence that the CD40 ligand on T cells provides a signal that drives B cell proliferation. This signal is synergistic with that delivered by anti-Ig antibody

    Insertion of the CXC chemokine ligand 9 (CXCL9) into the mouse hepatitis virus genome results in protection from viral-induced encephalitis and hepatitis.

    Get PDF
    The role of the CXC chemokine ligand 9 (CXCL9) in host defense following infection with mouse hepatitis virus (MHV) was determined. Inoculation of the central nervous system (CNS) of CXCL9-/- mice with MHV resulted in accelerated and increased mortality compared to wild type mice supporting an important role for CXCL9 in anti-viral defense. In addition, infection of RAG1-/- or CXCL9-/- mice with a recombinant MHV expressing CXCL9 (MHV-CXCL9) resulted in protection from disease that correlated with reduced viral titers within the brain and NK cell-mediated protection in the liver. Survival in MHV-CXCL9-infected CXCL9-/- mice was associated with reduced viral burden within the brain that coincided with increased T cell infiltration. Similarly, viral clearance from the livers of MHV-CXCL9-infected mice was accelerated but independent of increased T cell or NK cell infiltration. These observations indicate that CXCL9 promotes protection from coronavirus-induced neurological and liver disease

    cis-6-Methoxycarbonyl-2,10-dioxa-1-phosphabicyclo[4.4.0]decane 1-Oxide

    Get PDF
    The crystal structure of the title compound, C9H1505P, is described. The molecule consists of two cis-fused six-membered rings, both in the chair conformation.

    Mitonuclear Interactions Produce Diverging Responses to Mild Stress in Drosophila Larvae

    Get PDF
    Mitochondrial function depends on direct interactions between respiratory proteins encoded by genes in two genomes, mitochondrial and nuclear, which evolve in very different ways. Serious incompatibilities between these genomes can have severe effects on development, fitness and viability. The effect of subtle mitonuclear mismatches has received less attention, especially when subject to mild physiological stress. Here, we investigate how two distinct physiological stresses, metabolic stress (high-protein diet) and redox stress [the glutathione precursor N-acetyl cysteine (NAC)], affect development time, egg-to-adult viability, and the mitochondrial physiology of Drosophila larvae with an isogenic nuclear background set against three mitochondrial DNA (mtDNA) haplotypes: one coevolved (WT) and two slightly mismatched (COX and BAR). Larvae fed the high-protein diet developed faster and had greater viability in all haplotypes. The opposite was true of NAC-fed flies, especially those with the COX haplotype. Unexpectedly, the slightly mismatched BAR larvae developed fastest and were the most viable on both treatments, as well as control diets. These changes in larval development were linked to a shift to complex I-driven mitochondrial respiration in all haplotypes on the high-protein diet. In contrast, NAC increased respiration in COX larvae but drove a shift toward oxidation of proline and succinate. The flux of reactive oxygen species was increased in COX larvae treated with NAC and was associated with an increase in mtDNA copy number. Our results support the notion that subtle mitonuclear mismatches can lead to diverging responses to mild physiological stress, undermining fitness in some cases, but surprisingly improving outcomes in other ostensibly mismatched fly lines
    corecore