cis-6-Methoxycarbonyl-2,10-dioxa-1-phosphabicyclo[4.4.0] 1-Oxide

Thomas M. Lane
Marquette University
Oscar P Rodriguez
Marquette University
Anthony Gerard Sommese
Marquette University
Sheldon E. Cremer
Marquette University
Dennis W. Bennett
University of Wisconsin - Milwaukee

Published version. Acta Crystallographica Section C, C51 (1995): 251-253. DOI. © 1995
International Union of Crystallography.

Thomas M. Lane, Oscar P. Rodriguez, Anthony G. Sommese and Sheldon E. Cremer

Marquette University, Department of Chemistry, Todd Wehr Chemistry Building, 535 North 14th Street, Milwaukee, WI 53233, USA

Dennis W. Bennett
University of Wisconsin-Milwaukee, Department of Chemistry, Milwaukee, WI 53201, USA
(Received 20 May 1994; accepted 20 July 1994)

Abstract

The crystal structure of the title compound, $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{P}$, is described. The molecule consists of two cis-fused sixmembered rings, both in the chair conformation.

Comment

The crystal structure of the title compound, (I), was investigated in order to establish the stereochemistry of the methoxycarbonyl group relative to the phosphoryl group. Since the two analogous model compounds, decalin and 2,10-dioxabicyclo[4.4.0]decane (Descotes,

Lissac, Delmau \& Duplan, 1968; Beaulieu, Dickinson \& Deslongchamps, 1980) exist in both cis and trans isomeric forms, the goal was to synthesize both isomeric forms of this bicyclic phosphonate. For some as yet unknown reason only one isomer of the parent compound, 2,10-dioxa-1-phosphabicyclo[4.4.0]decane 1-oxide, (II), (Chérest \& Whitham, 1976; Whitham, 1989; Bellard, Postle \& Sheldrick, 1978) is produced regardless of the synthetic route employed (Rodriguez, Sommese \& Cremer, 1993). It was hoped that the presence of the methoxycarbonyl substituent would lead to both the cis and trans isomers of (I). Surprisingly, as with (II), only the cis isomer of (I) has been observed so far (Rodriguez, Sommese \& Cremer, 1993). The determination of the crystal structure was required in order to assign the cis-fused configuration unambiguously and therefore gain additional information about the apparent stability of the cis configuration (or instability of the trans configuration).

(I)

The two rings in (I), like the two rings in (II), are intrinsically non-equivalent in the solid state. Although the non-equivalence of the rings in (I) is not discernible from the $\mathrm{P}-\mathrm{O}$ bond lengths [1.567 (2) and 1.573 (2) \AA],

Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 35% probability level.
which differ by only 0.006 (3) \AA, i.e. 2σ, the bond angle at $\mathrm{O} 2\left[119.1(2)^{\circ}\right]$ is significantly wider than the angle at O3 [116.8(2) $\left.{ }^{\circ}\right]$.

The P1-C1 bond [1.814(3) \AA] is, as expected, the longest bond in (I), and is even longer than the corresponding bond in (II) $[1.783(4) \AA$ A]. The $\mathrm{P}-\mathrm{C}$ torsion angle in (I) $\left[\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 886.8(2)^{\circ}\right]$ is also larger than that in (II) $\left[\mathrm{Ol}-\mathrm{Pl}-\mathrm{C} 4-\mathrm{H} 746.4^{\circ}\right]$. These differences may be the result of a greater steric and electronic interaction between the methoxycarbonyl group and the phosphoryl group in (I) than between the $\alpha-\mathrm{H}$ atom and the phosphoryl group in (II).

Further studies aimed at determining whether the preferential formation of cis-(I) and cis-(II) during the synthesis of these compounds is directed by thermodynamic or kinetic control are underway.

Experimental

The title compound was synthesized by the procedure described by Rodriguez, Sommese \& Cremer (1993). Crystals (m.p. 397-398 K) were grown from a methylene chloride solution layered with diethyl ether.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{P}$
$M_{r}=234.12$
Orthorhombic
Pbca
$a=26.377$ (4) \AA
$b=8.297$ (2) \AA
$c=9.994$ (2) \AA
$V=2187.2(8) \AA^{3}$
$Z=8$
$D_{x}=1.422 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Picker diffractometer
$\theta-2 \theta$ scans
Absorption correction:
none
1690 measured reflections
1426 independent reflections
1021 observed reflections
$[I>2.0 \sigma(D)]$

Refinement

Refinement on F^{2}
$R(F)=0.034$
$w R\left(F^{2}\right)=0.055$
$S=2.55$
1021 reflections
138 parameters
H -atom parameters not refined
Weighting scheme based
on measured e.s.d.'s
$(\Delta / \sigma)_{\max }=0.304$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 21
reflections
$\theta=3.09-7.91^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate
$0.40 \times 0.30 \times 0.30 \mathrm{~mm}$
Colorless
$\theta_{\text {max }}=23.5^{\circ}$
$h=0 \rightarrow 28$
$k=0 \rightarrow 8$
$l=0 \rightarrow 10$
3 standard reflections frequency: 120 min intensity decay: none
$\Delta \rho_{\text {max }}=0.220 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.260 \mathrm{e}^{-3}$
Extinction correction:

$$
\begin{aligned}
F_{c}^{*}= & k F_{c}[1+(0.001 x \\
& \left.\left.\times F_{c}^{2} \lambda^{3} / \sin 2 \theta\right)\right]^{-1 / 4}
\end{aligned}
$$

Extinction coefficient:
$x=0.0042$ (3)
Atomic scattering factors from International Tables for X-ray Crystallography (1974. Vol. IV. Tables 2.2B and 2.3.1)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {eq }}$
P1	0.16207 (3)	0.43031 (10)	0.16173 (9)	0.041 (1)
O1	0.17235 (9)	0.5013 (3)	0.2921 (2)	0.057 (1)
O2	0.13699 (7)	0.2596 (2)	0.1722 (2)	0.048 (1)
O3	0.20979 (7)	0.3968 (3)	0.0715 (2)	0.054 (1)
O4	0.07147 (10)	0.7729 (3)	0.1417 (3)	0.082 (2)
O5	0.05538 (9)	0.52581 (9)	0.2121 (2)	0.058 (2)
Cl	0.12217 (12)	0.5540 (4)	0.0553 (3)	0.038 (2)
C2	0.0979 (1)	0.4501 (4)	-0.0567 (3)	0.054 (2)
C3	0.0781 (1)	0.2851 (4)	-0.0141 (3)	0.060 (2)
C4	0.1181 (1)	0.1829 (4)	0.0515 (4)	0.060 (2)
C5	0.1552 (1)	0.6890 (4)	-0.0064 (3)	0.055 (2)
C6	0.2037 (1)	0.6279 (4)	-0.0740 (3)	0.065 (2)
C7	0.2371 (1)	0.5378 (4)	0.0206 (3)	0.066 (2)
C8	0.0809 (1)	0.6332 (4)	0.1394 (3)	0.045 (2)
C9	0.0180 (1)	0.5882 (4)	0.3036 (3)	0.062 (2)

References

Beaulieu, N., Dickinson, R. A. \& Deslongchamps, P. (1980). Can. J. Chem. 58, 2531-2536.
Bellard, S., Postle, S. R. \& Sheldrick, G. M. (1978). Acta Cryst. B34, 1032-1033.
Chérest, M. \& Whitham, G. H. (1976). Unpublished results.
Descotes, G., Lissac, M., Delmau, J. \& Duplan, J. (1968). C. R. Acad. Sci. Ser. C, 267, 1240-1241.
Gabe, E. J., Le Page, Y.. Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. (1984). PLUTO84. Univ. Chemical Laboratory, Cambridge, England.
Rodriguez, O. P., Sommese, A. G. \& Cremer, S. E. (1993). Phosphorus Sulfur Silicon, 75, 107-110.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Weinrach, J. B. \& Bennett, D. W. (1991). J. Appl. Cryst. 24, 91-95.
Whitham, G. H. (1989). Personal communication.

Table 2. Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$)

$\mathrm{P} 1-\mathrm{O} 2$	1.567 (2)	$\mathrm{O} 2-\mathrm{C} 4$	1.454 (4)
$\mathrm{C} 8-\mathrm{C} 1$	1.523 (5)	C2-C3	1.527 (5)
P1-OI	1.455 (2)	O5-C8	1.334 (4)
C8-04	1.186 (5)	C3-C4	1.504 (5)
$\mathrm{Pl}-\mathrm{O} 3$	1.573 (2)	O5-C9	1.441 (4)
$\mathrm{C} 1-\mathrm{C} 2$	1.551 (5)	C5-C6	1.535 (5)
$\mathrm{Pl}-\mathrm{Cl}$	1.814 (3)	O3-C7	1.465 (4)
$\mathrm{C} 1-\mathrm{C} 5$	1.548 (5)	C7-C6	1.492 (5)
$\mathrm{O} 2-\mathrm{Pl}-\mathrm{Ol}$	112.65 (14)	$\mathrm{Pl}-\mathrm{O} 2-\mathrm{C} 4$	119.1 (2)
$\mathrm{Pl}-\mathrm{Cl}-\mathrm{C} 8$	109.6 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	116.0 (3)
$\mathrm{O} 2-\mathrm{Pl}-\mathrm{O} 3$	102.50 (13)	C8-O5-C9	116.9 (3)
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 2$	110.4 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	112.7 (3)
$\mathrm{O} 2-\mathrm{Pl}-\mathrm{Cl}$	107.79 (14)	$\mathrm{P} 1-\mathrm{O} 3-\mathrm{C} 7$	116.8 (2)
$\mathrm{Pl}-\mathrm{Cl}-\mathrm{C} 5$	108.4 (2)	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	114.0 (3)
$\mathrm{O} 1-\mathrm{Pl}-\mathrm{O} 3$	115.81 (14)	$\mathrm{O} 5-\mathrm{C} 8-\mathrm{Cl}$	111.9 (3)
C8- $\mathrm{Cl}-\mathrm{C} 2$	110.2 (3)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	110.9 (3)
$\mathrm{Ol}-\mathrm{Pl}-\mathrm{Cl}$	113.81 (15)	$\mathrm{O} 5-\mathrm{C} 8-\mathrm{O} 4$	122.4 (3)
$\mathrm{C} 8-\mathrm{Cl}-\mathrm{C} 5$	108.0 (3)	O3-C7-C6	109.3 (3)
O3-P1-Cl	103.19 (14)	$\mathrm{Cl}-\mathrm{C} 8-\mathrm{O} 4$	125.7 (3)
C2-C1-C5	110.2 (3)	C5-C6-C7	112.2 (3)
$\mathrm{O} 1-\mathrm{Pl}-\mathrm{O} 2-\mathrm{C} 4$	171.6 (3)	$\mathrm{O} 3-\mathrm{Pl}-\mathrm{O} 2-\mathrm{C} 4$	-63.2 (2)
$\mathrm{Cl}-\mathrm{Pl}-\mathrm{O} 2-\mathrm{C} 4$	45.2 (2)	$\mathrm{O} 1-\mathrm{Pl}-\mathrm{Cl}-\mathrm{C} 8$	-38.9 (2)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3-\mathrm{C} 7$	-68.0 (2)	$\mathrm{O} 1-\mathrm{Pl}-\mathrm{Cl}-\mathrm{C} 5$	78.8 (3)
$\mathrm{O} 2-\mathrm{Pl}-\mathrm{C} 1-\mathrm{C} 8$	86.8 (2)	$\mathrm{O} 1-\mathrm{Pl}-\mathrm{Cl}-\mathrm{C} 2$	-160.4 (3)
$\mathrm{O} 3-\mathrm{Pl}-\mathrm{Cl}-\mathrm{C} 5$	-47.5 (2)		

All H -atoms were allowed to ride on the heavy atom with isotropic displacement factors 1.5 times the equivalent isotropic displacement factor of the heavy atom. The methyl group was refined as a rigid rotor. The data were globally sorted and collected using PCXTL data collection software (Weinrach \& Bennett, 1991). Cell refinement and data reduction: NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: NRCVAX SOLVER. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976) and PLUTO84 (Motherwell, 1984).

[^0]
[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, bond distances and angles involving non- H atoms and torsion angles have been deposited with the IUCr (Reference: BK1069). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

