177 research outputs found

    Why bury CBDRRC alive?

    Get PDF

    Conference on Hot Planets and Cool Stars; Garching; Germany

    Get PDF
    Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source. Please note that access to the published version might require a subscription. Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses, conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted. The CPL service is administrated and maintained by Chalmers Library. (article starts on next page) Abstract. Ground based radial velocity (RV) searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite) will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes.

    The CHEOPS mission

    Full text link
    The CHaracterising ExOPlanet Satellite (CHEOPS) was selected in 2012, as the first small mission in the ESA Science Programme and successfully launched in December 2019. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys and to following phase curves. CHEOPS will provide prime targets for future spectroscopic atmospheric characterisation. Requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars in the magnitude range between 6 and 9 by achieving a photometric precision of 20 ppm in 6 hours of integration. For K stars in the magnitude range between 9 and 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration. This is achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter telescope. The 280 kg spacecraft has a pointing accuracy of about 1 arcsec rms and orbits on a sun-synchronous dusk-dawn orbit at 700 km altitude. The nominal mission lifetime is 3.5 years. During this period, 20% of the observing time is available to the community through a yearly call and a discretionary time programme managed by ESA.Comment: Submitted to Experimental Astronom

    CHEOPS geometric albedo of the hot Jupiter HD 209458 b

    Get PDF
    Funding: P.F.L.M. acknowledges support from STFC research grant number ST/M001040/1. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project Four Aces. grant agreement No 724427).We report the detection of the secondary eclipse of the hot Jupiter HD 209458 b in optical/visible light using the CHEOPS space telescope. Our measurement of 20.4-3.3+3.2 parts per million translates into a geometric albedo of Ag = 0.096 ± 0.016. The previously estimated dayside temperature of about 1500 K implies that our geometric albedo measurement consists predominantly of reflected starlight and is largely uncontaminated by thermal emission. This makes the present result one of the most robust measurements of Ag for any exoplanet. Our calculations of the bandpassintegrated geometric albedo demonstrate that the measured value of Ag is consistent with a cloud-free atmosphere, where starlight is reflected via Rayleigh scattering by hydrogen molecules, and the water and sodium abundances are consistent with stellar metallicity. We predict that the bandpass-integrated TESS geometric albedo is too faint to detect and that a phase curve of HD 209458 b observed by CHEOPS would have a distinct shape associated with Rayleigh scattering if the atmosphere is indeed cloud free.Publisher PDFPeer reviewe

    CHEOPS and TESS view of the ultra-short period super-Earth TOI-561 b

    Get PDF
    Ultra-short period planets (USPs) are a unique class of super-Earths with an orbital period of less than a day and hence subject to intense radiation from their host star. While most of them are consistent with bare rocks, some show evidence of a heavyweight envelope, which could be a water layer or a secondary metal-rich atmosphere sustained by an outgassing surface. Much remains to be learned about the nature of USPs. The prime goal of the present work is to study the bulk planetary properties and atmosphere of TOI-561b, through the study of its transits and occultations. We obtained ultra-precise transit photometry of TOI-561b with CHEOPS and performed a joint analysis of this data with four TESS sectors. Our analysis of TOI-561b transit photometry put strong constraints on its properties, especially on its radius, Rp=1.42 +/- 0.02 R_Earth (at ~2% error). The internal structure modelling of the planet shows that the observations are consistent with negligible H/He atmosphere, however requiring other lighter materials, in addition to pure iron core and silicate mantle to explain the observed density. We find that this can be explained by the inclusion of a water layer in our model. We searched for variability in the measured Rp/R* over time to trace changes in the structure of the planetary envelope but none found within the data precision. In addition to the transit event, we tentatively detect occultation signal in the TESS data with an eclipse depth of ~27 +/- 11 ppm. Using the models of outgassed atmospheres from the literature we find that the thermal emission from the planet can mostly explain the observation. Based on this, we predict that NIR/MIR observations with JWST should be able to detect silicate species in the atmosphere of the planet. This could also reveal important clues about the planetary interior and help disentangle planet formation and evolution models.Comment: 17 pages, 10 + 3 figures, 4 tables, accepted for publication in A&A (abstract abbreviated

    55 Cancri e's occultation captured with CHEOPS

    Full text link
    Past occultation and phase-curve observations of the ultra-short period super-Earth 55 Cnc e obtained at visible and infrared wavelengths have been challenging to reconcile with a planetary reflection and emission model. In this study, we analyse a set of 41 occultations obtained over a two-year timespan with the CHEOPS satellite. We report the detection of 55 Cnc e's occultation with an average depth of 12±312\pm3 ppm. We derive a corresponding 2-σ\sigma upper limit on the geometric albedo of Ag<0.55A_g < 0.55 once decontaminated from the thermal emission measured by Spitzer at 4.5μ\mum. CHEOPS's photometric performance enables, for the first time, the detection of individual occultations of this super-Earth in the visible and identifies short-timescale photometric corrugations likely induced by stellar granulation. We also find a clear 47.3-day sinusoidal pattern in the time-dependent occultation depths that we are unable to relate to stellar noise, nor instrumental systematics, but whose planetary origin could be tested with upcoming JWST occultation observations of this iconic super-Earth.Comment: In press. Accepted for publication in Astronomy and Astrophysics on 13 October 2022. 10 pages, 7 figures and 3 table

    Exploiting timing capabilities of the CHEOPS mission with warm-Jupiter planets

    Get PDF
    Funding: ACC and TGW acknowledge support from STFC consolidated grant No. ST/M001296/1. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project FOUR ACES; grant agreement No. 724427)We present 17 transit light curves of seven known warm-Jupiters observed with the CHaracterising ExOPlanet Satellite (CHEOPS). The light curves have been collected as part of the CHEOPS Guaranteed Time Observation (GTO) program that searches for transit-timing variation (TTV) of warm-Jupiters induced by a possible external perturber to shed light on the evolution path of such planetary systems. We describe the CHEOPS observation process, from the planning to the data analysis. In this work, we focused on the timing performance of CHEOPS, the impact of the sampling of the transit phases, and the improvement we can obtain by combining multiple transits together. We reached the highest precision on the transit time of about 13–16 s for the brightest target (WASP-38, G = 9.2) in our sample. From the combined analysis of multiple transits of fainter targets with G ≥ 11, we obtained a timing precision of ∼2 min. Additional observations with CHEOPS, covering a longer temporal baseline, will further improve the precision on the transit times and will allow us to detect possible TTV signals induced by an external perturber.Publisher PDFPeer reviewe

    Transit timing variations of AU Microscopii b and c

    Get PDF
    Funding: A.C.C. and T.W. acknowledge support from STFC consolidated grant number ST/M001296/1.Here we report large-amplitude transit timing variations (TTVs) for AU Microcopii b and c as detected in combined TESS (2018, 2020) and CHEOPS (2020, 2021) transit observations. AU Mic is a young planetary system with a debris disk and two transiting warm Neptunes. A TTV on the order of several minutes was previously reported for AU Mic b, which was suggested to be an outcome of mutual perturbations between the planets in the system. In 2021, we observed AU Mic b (five transits) and c (three transits) with the CHEOPS space telescope to follow-up the TTV of AU Mic b and possibly detect a TTV for AU Mic c. When analyzing TESS and CHEOPS 2020-2021 measurements together, we find that a prominent TTV emerges with a full span of >= 23 min between the two TTV extrema. Assuming that the period change results from a periodic process -such as mutual perturbations- we demonstrate that the times of transits in the summer of 2022 are expected to be 30-85 min later than predicted by the available linear ephemeris.Publisher PDFPeer reviewe

    Spi-OPS : Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection

    Get PDF
    A.C.C. and T.G.W. acknowledge support from STFC consolidated grant number ST/M001296/1.Context. The light curves of tidally locked hot Jupiters transiting fast-rotating, early-type stars are a rich source of information about both the planet and star, with full-phase coverage enabling a detailed atmospheric characterisation of the planet. Although it is possible to determine the true spin–orbit angle Ψ – a notoriously difficult parameter to measure – from any transit asymmetry resulting from gravity darkening induced by the stellar rotation, the correlations that exist between the transit parameters have led to large disagreements in published values of Ψ for some systems. Aims. We aimed to study these phenomena in the light curves of the ultra-hot Jupiter MASCARA-1 b, which is characteristically similar to well-studied contemporaries such as KELT-9 b and WASP-33 b. Methods. We obtained optical CHaracterising ExOPlanet Satellite (CHEOPS) transit and occultation light curves of MASCARA-1 b, and analysed them jointly with a Spitzer/IRAC 4.5 μm full-phase curve to model the asymmetric transits, occultations, and phase-dependent flux modulation. For the latter, we employed a novel physics-driven approach to jointly fit the phase modulation by generating a single 2D temperature map and integrating it over the two bandpasses as a function of phase to account for the differing planet–star flux contrasts. The reflected light component was modelled using the general ab initio solution for a semi-infinite atmosphere. Results. When fitting the CHEOPS and Spitzer transits together, the degeneracies are greatly diminished and return results consistent with previously published Doppler tomography. Placing priors informed by the tomography achieves even better precision, allowing a determination of Ψ = 72.1−2.4+2.5 deg. From the occultations and phase variations, we derived dayside and nightside temperatures of 3062−68+66 K and 1720 ± 330 K, respectively.Our retrieval suggests that the dayside emission spectrum closely follows that of a blackbody. As the CHEOPS occultation is too deep to be attributed to blackbody flux alone, we could separately derive geometric albedo Ag = 0.171−0.068+0.066 and spherical albedo As = 0.266−0.100+0.097 from the CHEOPS data, and Bond albedoAB = 0.057−0.101+0.083 from the Spitzer phase curve.Although small, the Ag and As indicate that MASCARA-1 b is more reflective than most other ultra-hot Jupiters, where H− absorption is expected to dominate. Conclusions. Where possible, priors informed by Doppler tomography should be used when fitting transits of fast-rotating stars, though multi-colour photometry may also unlock an accurate measurement of Ψ. Our approach to modelling the phase variations at different wavelengths provides a template for how to separate thermal emission from reflected light in spectrally resolved James Webb Space Telescope phase curve data.Publisher PDFPeer reviewe
    corecore