99 research outputs found

    Representation Of A Nonspherical Ice Particle By A Collection Of Independent Spheres For Scattering And Absorption Of Radiation: 2. Hexagonal Columns And Plates

    Get PDF
    [1] A cloud of nonspherical ice particles may be represented in radiation models by a collection of spheres, in which the model cloud contains the same total volume of ice and the same total surface area as the real cloud but not the same number of particles. The spheres then have the same volume-to-area (V/A) ratio as the nonspherical particle. In previous work this approach was shown to work well to represent randomly oriented infinitely long circular cylinders for computation of hemispherical reflectance, transmittance, and absorptance. In this paper the results have been extended to hexagonal columns and plates using a geometric optics technique for large particles and finite-difference-time-domain theory (FDTD) for small particles. The extinction efficiency and single-scattering coalbedo for these prisms are closely approximated by the values for equal-V/A spheres across the ultraviolet, visible, and infrared from 0.2 to 25 mum wavelength. Errors in the asymmetry factor can be significant where ice absorptance is weak, at visible wavelengths for example. These errors are greatest for prisms with aspect ratios close to 1. Errors in hemispheric reflectance, absorptance, and transmittance are calculated for horizontally homogeneous clouds with ice water paths from 0.4 to 200,000 g m(-2) and crystal thicknesses of 1 to 400 mum, to cover the range of crystal sizes and optical depths from polar stratospheric clouds (PSCs) through cirrus clouds to surface snow. The errors are less than 0.05 over most of these ranges at all wavelengths but can be larger at visible wavelengths because of the ideal shapes of the prisms. The method was not tested for, and is not expected to be accurate for, angle-dependent radiances

    Representation Of A Nonspherical Ice Particle By A Collection Of Independent Spheres For Scattering And Absorption Of Radiation: 3. Hollow Columns And Plates

    Get PDF
    The ability of an assembly of spheres to represent scattering and absorption by a nonspherical ice crystal of the same volume-to-area (V/A) ratio was previously evaluated for convex shapes (circular cylinders and hexagonal prisms). Here we extend the comparison to indented and hollow prisms, which are common in ice clouds. In the equivalent-sphere representation, the crystal mass and surface area are both conserved. Internal surfaces as well as external surfaces contribute to the total surface area; in the model representation both become external surfaces of spheres. The optical depth tau of the model cloud is thus greater than that of the real cloud by the ratio A/4P, where A is the total area of the nonspherical particle and P is the orientation-averaged projected area. This ratio, which we call fluffiness,\u27\u27 is unity for convex shapes but may exceed 2 for clusters of hollow bullets. In effect, the scattering at interior surfaces of a hollow crystal becomes classified as multiple scattering in the model of ice spheres. Therefore, rather than directly comparing the asymmetry factor (g) and single-scattering albedo (omega(o)) of the hollow crystal to those of the equal-V/A sphere, it is more appropriate to compare the product tau(1 - g)omega(o), because this quantity largely determines the bulk radiative properties of the cloud. Errors in albedo, absorptance, and transmittance of ice clouds, caused by the equal-V/A representation, are presented for a range of aspect ratios, indentation depths, and ice-water paths at visible and near-infrared wavelengths

    Sources of light-absorbing aerosol in arctic snow and their seasonal variation

    Get PDF
    Two data sets consisting of measurements of light absorbing aerosols (LAA) in arctic snow together with suites of other corresponding chemical constituents are presented; the first from Siberia, Greenland and near the North Pole obtained in 2008, and the second from the Canadian arctic obtained in 2009. A preliminary differentiation of the LAA into black carbon (BC) and non-BC LAA is done. Source attribution of the light absorbing aerosols was done using a positive matrix factorization (PMF) model. Four sources were found for each data set (crop and grass burning, boreal biomass burning, pollution and marine). For both data sets, the crops and grass biomass burning was the main source of both LAA species, suggesting the non-BC LAA was brown carbon. Depth profiles at most of the sites allowed assessment of the seasonal variation in the source strengths. The biomass burning sources dominated in the spring but pollution played a more significant (though rarely dominant) role in the fall, winter and, for Greenland, summer. The PMF analysis is consistent with trajectory analysis and satellite fire maps

    Forward electromagnetic scattering models for sea ice

    Get PDF
    Journal ArticleRecent advances in forward modeling of the electromagnetic scattering properties of sea ice are presented. In particular, the principal results include the following: 1) approximate calculations of electromagnetic scattering from multilayer random media with rough interfaces, based on the distorted Born approximation and radiative transfer (RT) theory; 2) comprehensive theory of the effective complex permittivity of sea ice based on rigorous bounds in the quasi-static case and strong fluctuation theory in the weakly scattering regime; 3) rigorous analysis of the Helmholtz equation and its solutions for idealized sea ice models, which has led in the one dimensional (1-D) case to nonlinear generalizations of classical theorems in Fourier analysis

    Electromagnetic and physical properties of sea ice formed in the presence of wave action

    Get PDF
    Estimating the magnitude of brine flux to the upper ocean requires an ability to assess the dynamics of the formation of sea ice in a region. Brine storage and rate of expulsion is determined by the environmental conditions under which the sea ice forms. In this paper, the physical and electromagnetic properties of sea ice, formed under wave-agitated conditions, are studied and compared with results obtained from ice formed under quiescent conditions. Wave agitation is known to have a profound effect on the air-ice interface and internal ice structure. A variety of sensors, both active and passive, optical and microwave, were used to perform this characterization. Measured electromagnetic parameters included radar backscatter, microwave emission, and spectral albedo in the visible and infrared. Measured physical properties included ice structure, brine and temperature distribution, profiles of the vertical height of the air-ice interface, and ice formation processes. Results showed that emission, backscatter, and albedo all take different signature paths during the transformation from saline water to young sea ice and that the paths depend on sea surface state during ice formation

    Hand, Foot, and Mouth Disease in China: critical community size and spatial vaccination strategies

    No full text
    Hand Foot and Mouth Disease (HFMD) constitutes a considerable burden for health care systems across China. Yet this burden displays important geographic heterogeneity that directly affects the local persistence and the dynamics of the disease, and thus the ability to control it through vaccination campaigns. Here, we use detailed geographic surveillance data and epidemic models to estimate the critical community size (CCS) of HFMD associated enterovirus serotypes CV-A16 and EV-A71 and we explore what spatial vaccination strategies may best reduce the burden of HFMD. We found CCS ranging from 336,979 (±225,866) to 722,372 (±150,562) with the lowest estimates associated with EV-A71 in the southern region of China where multiple transmission seasons have previously been identified. Our results suggest the existence of a regional immigration-recolonization dynamic driven by urban centers. If EV-A71 vaccines doses are limited, these would be optimally deployed in highly populated urban centers and in high-prevalence areas. If HFMD vaccines are included in China's National Immunization Program in order to achieve high coverage rates (>85%), routine vaccination of newborns largely outperforms strategies in which the equivalent number of doses is equally divided between routine vaccination of newborns and pulse vaccination of the community at large

    Locating the place and meaning of physical activity in the lives of young people from low-income, lone-parent families

    Get PDF
    Background: In the United Kingdom (UK), it is predicted that economic cuts and a subsequent increase in child poverty will affect those already on the lowest incomes and, in particular, those living in lone-parent families. As a result, the informal pedagogic encounters within the family that contribute to the development of physical activity-related values, beliefs and dispositions from a very early age will be affected. Therefore, it is vital that we gain an understanding of the place and meaning of physical activity in the lives of young people, as well as the informal pedagogic practices and the socio-cultural forces that influence individual agency. Purpose: Based on Bourdieu's key concepts, this paper explores the interplay of structural conditions and personal agency with regard to physical activity in the lives of young people from low-income, lone-parent families. Methods: This study reports on the voices of 24 participants (aged 11–14) from low-income, lone-parent families in the West Midlands, UK. These participants were engaged in paired, semi-structured interviews to explore issues of personal agency by listening to how they reported on their present lives, past experiences and future possibilities with regard to physical activity. All corresponding interview data were analysed using analytical induction. Findings: This paper suggests that young people exhibited diminished desires to engage in activity due to structural constraints of time, parents' work commitments and a lack of transport that resulted in engagement in sedentary alternatives. Informal pedagogic practices within these families were restricted due to the associated structural conditions of living in a lone-parent family. As such, young people's choice to not seek out physical activities when at home reflected a ‘taste for necessity’ resulting from a lack of cultural and economic capital, placing restrictions on physical activity opportunities that stemmed from their family doxa. Conclusions: To succeed in fostering dispositions and opportunities to participate in physical activity, we must engage with young people from low-income, lone-parent families from an early age. Certainly though, further consideration of the informal pedagogic practices within, and the demands on, lone-parent families is required when designing any intervention or policy that seeks to enhance their current circumstances and provide opportunities for engagement in a variety of contexts

    Reinventing grounded theory: some questions about theory, ground and discovery

    Get PDF
    Grounded theory’s popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed—‘theory,’ ‘ground’ and ‘discovery’—which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory, these notions—embodied in continuing reinventions of grounded theory—constrain and distort qualitative inquiry, and that what is contrived is not in fact theory in any meaningful sense, that ‘ground’ is a misnomer when talking about interpretation and that what ultimately materializes following grounded theory procedures is less like discovery and more akin to invention. The procedures admittedly provide signposts for qualitative inquirers, but educational researchers should be wary, for the significance of interpretation, narrative and reflection can be undermined in the procedures of grounded theory

    A broad spectral, interdisciplinary investigation of the electromagnetic properties of sea ice

    Get PDF
    This paper highlights the interrelationship of research completed by a team of investigators and presented in the several individual papers comprising this Special Section on the Office of Naval Research (ONR), Arlington, VA, Sponsored Sea Ice Electromagnetics Accelerated Research Initiative (ARI). The objectives of the initiative were the following: 1) understand the mechanisms and processes that link the morphological and physical properties of sea ice to its electromagnetic (EM) characteristics; 2) develop and verify predictive models for the interaction of visible, infrared, and microwave radiation with sea ice; 3) develop and verify inverse scattering techniques applicable to problems involving the interaction of EM radiation with sea ice. Guiding principles for the program were that all EM data be taken with concurrent physical property data (salinity, density, roughness, etc.) and that broad spectral data be acquired in as nearly a simultaneous fashion as possible. Over 30 investigators participated in laboratory, field, and modeling studies that spanned the EM spectrum from radio to ultraviolet wavelengths. An interdisciplinary approach that brought together sea ice physicists, remote-sensing experts tin EM measurements), and forward and inverse modelers (primarily mathematicians and EM theorists) was a hallmark of the program. Along with describing results from experiments and modeling efforts, possible paradigms for using broad spectral data in developing algorithms for analyzing remote-sensing data in terms of ice concentration, age, type, and possibly thickness are briefly discussed
    corecore