118 research outputs found
Phase diagrams of 2D and 3D disordered Bose gases in the local density approximation
We study the superfluid transitions in bidimensional (2D) and tridimensional
(3D) disordered and interacting Bose gases. We work in the limit of long-range
correlated disorder such that it can be treated in the local density
approximation. We present the superfluid transition curves both in the
disorder-temperature plane well as in the disorder-entropy plane in 2D and 3D
Bose gases. Surprisingly, we find that a small amount of disorder is always
favorable to the apparition of a superfluid. Our results offer a quantitative
comparison with recent experiments in 2D disordered ultra-cold gases, for which
no exact theory exists.Comment: LCF-O
All optical cooling of K to Bose Einstein condensation
We report the all-optical production of Bose Einstein condensates (BEC) of
K atoms. We directly load atoms in a large volume
optical dipole trap from gray molasses on the D1 transition. We then apply a
small magnetic quadrupole field to polarize the sample before transferring the
atoms in a tightly confining optical trap. Evaporative cooling is finally
performed close to a Feshbach resonance to enhance the scattering length. Our
setup allows to cross the BEC threshold with atoms every 7s. As
an illustration of the interest of the tunability of the interactions we study
the expansion of Bose-Einstein condensates in the 1D to 3D crossover
Effect of disorder close to the superfluid transition in a two-dimensional Bose gas
We experimentally study the effect of disorder on trapped quasi
two-dimensional (2D) 87Rb clouds in the vicinity of the
Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The disorder
correlation length is of the order of the Bose gas characteristic length scales
(thermal de Broglie wavelength, healing length) and disorder thus modifies the
physics at a microscopic level. We analyze the coherence properties of the
cloud through measurements of the momentum distributions, for two disorder
strengths, as a function of its degeneracy. For moderate disorder, the
emergence of coherence remains steep but is shifted to a lower entropy. In
contrast, for strong disorder, the growth of coherence is hindered. Our study
is an experimental realization of the dirty boson problem in a well controlled
atomic system suitable for quantitative analysis
A quantum trampoline for ultra-cold atoms
We have observed the interferometric suspension of a free-falling
Bose-Einstein condensate periodically submitted to multiple-order diffraction
by a vertical 1D standing wave. The various diffracted matter waves recombine
coherently, resulting in high contrast interference in the number of atoms
detected at constant height. For long suspension times, multiple-wave
interference is revealed through a sharpening of the fringes. We use this
scheme to measure the acceleration of gravity
Observing the Formation of Long-range Order during Bose-Einstein Condensation
We have experimentally investigated the formation of off-diagonal long-range
order in a gas of ultracold atoms. A magnetically trapped atomic cloud prepared
in a highly nonequilibrium state thermalizes and thereby crosses the
Bose-Einstein condensation phase transition. The evolution of phase coherence
between different regions of the sample is constantly monitored and information
on the spatial first-order correlation function is obtained. We observe the
growth of the spatial coherence and the formation of long-range order in real
time and compare it to the growth of the atomic density. Moreover, we study the
evolution of the momentum distribution during the nonequilibrium formation of
the condensate.Comment: 4 pages, 4 figure
Cavity QED with a Bose-Einstein condensate
Cavity quantum electrodynamics (cavity QED) describes the coherent
interaction between matter and an electromagnetic field confined within a
resonator structure, and is providing a useful platform for developing concepts
in quantum information processing. By using high-quality resonators, a strong
coupling regime can be reached experimentally in which atoms coherently
exchange a photon with a single light-field mode many times before dissipation
sets in. This has led to fundamental studies with both microwave and optical
resonators. To meet the challenges posed by quantum state engineering and
quantum information processing, recent experiments have focused on laser
cooling and trapping of atoms inside an optical cavity. However, the tremendous
degree of control over atomic gases achieved with Bose-Einstein condensation
has so far not been used for cavity QED. Here we achieve the strong coupling of
a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse
optical cavity and present a measurement of its eigenenergy spectrum. This is a
conceptually new regime of cavity QED, in which all atoms occupy a single mode
of a matter-wave field and couple identically to the light field, sharing a
single excitation. This opens possibilities ranging from quantum communication
to a wealth of new phenomena that can be expected in the many-body physics of
quantum gases with cavity-mediated interactions.Comment: 6 pages, 4 figures; version accepted for publication in Nature;
updated Fig. 4; changed atom numbers due to new calibratio
Bosons and Fermions near Feshbach resonances
Near Feshbach resonances, , systems of Bose and Fermi particles
become strongly interacting/dense. In this unitary limit both bosons and
fermions have very different properties than in a dilute gas, e.g., the energy
per particle approach a value times an universal many-body
constant. Calculations based upon an approximate Jastrow wave function can
quantitatively describe recent measurements of trapped Bose and Fermi atoms
near Feshbach resonances.
The pairing gap between attractive fermions also scales as
near Feshbach resonances and is a large fraction
of the Fermi energy - promising for observing BCS superfluidity in traps.
Pairing undergoes several transitions depending on interaction strength and the
number of particles in the trap and can also be compared to pairing in nuclei.Comment: Revised version extended to include recent molecular BEC-BCS result
Thermodynamic Measurements in a Strongly Interacting Fermi Gas
We conduct a series of measurements on the thermodynamic properties of an
optically-trapped strongly interacting Fermi gas, including the energy ,
entropy , and sound velocity . Our model-independent measurements of
and enable a precision study of the finite temperature thermodynamics. The
data are directly compared to several recent predictions. The
temperature in both the superfluid and normal fluid regime is obtained from the
fundamental thermodynamic relation by parameterizing
the data. Our data are also used to experimentally calibrate the
endpoint temperatures obtained for adiabatic sweeps of the magnetic field
between the ideal and strongly interacting regimes. This enables the first
experimental calibration of the temperature scale used in experiments on
fermionic pair condensation. Our calibration shows that the ideal gas
temperature measured for the onset of pair condensation corresponds closely to
the critical temperature estimated in the strongly interacting regime from the
fits to our data. The results are in very good agreement with recent
predictions. Finally, using universal thermodynamic relations, we estimate the
chemical potential and heat capacity of the trapped gas from the data.Comment: 29 pages, 12 figures. To appear in JLTP online, and in the January,
2009 volum
The Unitary Gas and its Symmetry Properties
The physics of atomic quantum gases is currently taking advantage of a
powerful tool, the possibility to fully adjust the interaction strength between
atoms using a magnetically controlled Feshbach resonance. For fermions with two
internal states, formally two opposite spin states, this allows to prepare long
lived strongly interacting three-dimensional gases and to study the BEC-BCS
crossover. Of particular interest along the BEC-BCS crossover is the so-called
unitary gas, where the atomic interaction potential between the opposite spin
states has virtually an infinite scattering length and a zero range. This
unitary gas is the main subject of the present chapter: It has fascinating
symmetry properties, from a simple scaling invariance, to a more subtle
dynamical symmetry in an isotropic harmonic trap, which is linked to a
separability of the N-body problem in hyperspherical coordinates. Other
analytical results, valid over the whole BEC-BCS crossover, are presented,
establishing a connection between three recently measured quantities, the tail
of the momentum distribution, the short range part of the pair distribution
function and the mean number of closed channel molecules.Comment: 63 pages, 8 figures. Contribution to the Springer Lecture Notes in
Physics "BEC-BCS Crossover and the Unitary Fermi gas" edited by Wilhelm
Zwerger. Revised version correcting a few typo
- …