41 research outputs found

    Will Esports Result in a Higher Prevalence of Problematic Gaming? A Review of the Global Situation

    Get PDF
    Background and aims: Video gaming is highly prevalent in modern culture, particularly among young people, and a healthy hobby for the majority of users. However, in recent years, there has been increasing global recognition that excessive video gaming may lead to marked functional impairment and psychological distress for a significant minority of players. Esports is a variant of video gaming. It is a relatively new phenomenon but has attracted a considerable number of followers across the world and is a multimillion dollar industry. The aim of this briefing paper is to review the global situation on esports and related public health implications. Methods: A non-systematic review was conducted. Information obtained from the Internet and PubMed was collated and presented as genres of games, varieties and magnitudes of impacts, popularity, fiscal impact in monetary terms, government involvement, and public health implications. Results: There are several different kinds of esports but there was no clear categorization on the genre of games. Many tournaments have been organized by gaming companies across the world with huge prize pools, and some of these events have government support. Little information on the health effects associated with esports was identified. Discussion and conclusions: A majority of the sources of information were from commercial settings, and failed to declare conflicts of interest, which may result in a biased picture of the current situation. When gaming activity is being further promoted under the umbrella of esports, it seems reasonable to expect an increase in problematic gaming and thus increased prevalence of gaming disorder and hazardous gaming. With increasing demand for treatment services for gaming addition/disorder in different countries across the world, it is a significant public health concern. More empirically based research on this topic is needed

    Repositioning of Verrucosidin, a purported inhibitor of chaperone protein GRP78, as an inhibitor of mitochondrial electron transport chain complex I.

    Get PDF
    Verrucosidin (VCD) belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78) expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD's anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose), but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin). However, VCD's strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin) might act in a similar GRP78-independent fashion will be discussed

    Time to call for a global public health approach in prevention of the onset and progression of problematic gaming : Commentary on: Policy responses to problematic video game use: A systematic review of current measures and future possibilities (Király et al., 2018)

    Get PDF
    Problematic video gaming is a global problem. Policy and programs responses to the problem vary among countries, partly due to cultural differences in the east and the west, meaning that caution is needed in drawing comparisons. Promoting parental education and positive youth development would be a useful approach to curb problematic behavior among children and adolescents. We suggest using a public health approach, based on our experience in dealing with commodities, which are harmful to health

    ERRATUM

    Get PDF
    Time to call for a global public health approach in prevention of the onset and progression of problematic gamin

    Intestinal mucosal alterations in rats with carbon tetrachloride-induced cirrhosis: changes in glycosylation and luminal bacteria

    Get PDF
    Spontaneous bacterial peritonitis is a major cause of mortality after liver cirrhosis. Altered permeability of the mucosa and deficiencies in host immune defenses through bacterial translocation from the intestine due to intestinal bacterial overgrowth have been implicated in the development of this complication. Molecular mechanisms underlying the process are not well known. In order to understand mechanisms involved in translocation of bacteria, this study explored the role of oxidative stress in mediating changes in intestinal mucosal glycosylation and luminal bacterial content during cirrhosis. CCl4-induced cirrhosis in rats led to prolonged oxidative stress in the intestine, accompanied by increased sugar content of both intestinal brush border and surfactant layers. This was accompanied by changes in bacterial flora in the gut, which showed increased hydrophobicity and adherence to the mucosa. Inhibition of xanthine oxidase using sodium tungstate or antioxidant supplementation using vitamin E reversed the oxidative stress, changes in brush border membrane sugar content, and bacterial adherence. In conclusion, oxidative stress in the intestine during cirrhosis alters mucosal glycosylation, accompanied by an increased hydrophobicity of luminal bacteria, enabling increased bacterial adherence onto epithelial cells. This might facilitate translocation across the mucosa, resulting in complications such as spontaneous bacterial peritonitis

    Renal damage in experimentally-induced cirrhosis in rats: role of oxygen free radicals

    Get PDF
    Cirrhosis with ascites is associated with impaired renal function accompanied by sodium and water retention. Although it has been suggested that mediators such as nitric oxide play a role in the development of renal failure in this situation, other mechanisms underlying the process are not well understood. This study examined the role of oxidative stress in mediating renal damage during the development of cirrhosis in order to understand mechanisms involved in the process. It was shown that carbon tetrachloride- or thioacetamide-induced cirrhosis in rats results in oxidative stress in the kidney as seen by increased lipid peroxidation and protein oxidation, accompanied by altered antioxidant status. Cirrhosis was also found to affect renal mitochondrial function, as assessed by measurement of the respiratory control ratio, the swelling of mitochondria, and calcium flux across mitochondrial membranes. Increased lipid peroxidation and changes in lipid composition were evident in the renal brush border membranes, with compromised transport of 14C glucose across these membranes. In conclusion, renal alterations produced as a result of cirrhosis in the rat are possibly mediated by oxidative stress

    Intestinal Mucosal Alterations in Rats With Carbon Tetrachloride-Induced Cirrhosis: Changes in Glycosylation and Luminal Bacteria

    Get PDF
    Spontaneous bacterial peritonitis is a major cause of mortality after liver cirrhosis. Altered permeability of the mucosa and deficiencies in host immune defenses through bacterial translocation from the intestine due to intestinal bacterial overgrowth have been implicated in the development of this complication. Molecular mechanisms underlying the process are not well known. In order to understand mechanisms involved in translocation of bacteria, this study explored the role of oxidative stress in mediating changes in intestinal mucosal glycosylation and luminal bacterial content during cirrhosis. CCl4-induced cirrhosis in rats led to prolonged oxidative stress in the intestine, accompanied by increased sugar content of both intestinal brush border and surfactant layers. This was accompanied by changes in bacterial flora in the gut, which showed increased hydrophobicity and adherence to the mucosa. Inhibition of xanthine oxidase using sodium tungstate or antioxidant supplementation using vitamin E reversed the oxidative stress, changes in brush border membrane sugar content, and bacterial adherence. In conclusion, oxidative stress in the intestine during cirrhosis alters mucosal glycosylation, accompanied by an increased hydrophobicity of luminal bacteria, enabling increased bacterial adherence onto epithelial cells. This might facilitate translocation across the mucosa, resulting in complications such as spontaneous bacterial peritonitis

    Renal Damage in Experimentally-Induced Cirrhosis in Rats: Role of Oxygen Free Radicals

    Get PDF
    Cirrhosis with ascites is associated with impaired renal function accompanied by sodium and water retention. Although it has been suggested that mediators such as nitric oxide play a role in the development of renal failure in this situation, other mechanisms underlying the process are not well understood. This study examined the role of oxidative stress in mediating renal damage during the development of cirrhosis in order to understand mechanisms involved in the process. It was shown that carbon tetrachloride– or thioacetamide-induced cirrhosis in rats results in oxidative stress in the kidney as seen by increased lipid peroxidation and protein oxidation, accompanied by altered antioxidant status. Cirrhosis was also found to affect renal mitochondrial function, as assessed by measurement of the respiratory control ratio, the swelling of mitochondria, and calcium flux across mitochondrial membranes. Increased lipid peroxidation and changes in lipid composition were evident in the renal brush border membranes, with compromised transport of 14C glucose across these membranes. In conclusion, renal alterations produced as a result of cirrhosis in the rat are possibly mediated by oxidative stress

    Role of intestine in postsurgical complications: involvement of free radicals

    No full text
    Surgery at any location in the body leads to surgical stress response and alterations in normal body homeostasis. The intestine is extremely sensitive to surgical stress even at remote locations and the gastrointestinal tract plays an important role in the development of postsurgical complications such as sepsis, the systemic immune response syndrome (SIRS), and multiple organ failure syndrome (MOFS). The generation of free radicals and subsequent biochemical alterations at the cellular and subcellular level in the intestine has been suggested to play an important role in this process. These oxidative stress-induced events in the mucosa might act as an initiator of distant organ damage and also facilitate bacterial adherence onto the epithelium and translocation into the systemic circulation. This review attempts to highlight the important role of intestine and oxygen free radicals in initiating post-surgical complications
    corecore