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Intestinal Mucosal Alterations in Rats With Carbon
Tetrachloride-Induced Cirrhosis: Changes in

Glycosylation and Luminal Bacteria
Sathish Kumar Natarajan, Prabhu Ramamoorthy, Simmy Thomas, Jayasree Basivireddy, Gagandeep Kang,

Anup Ramachandran, Anna B Pulimood, and K.A. Balasubramanian

Spontaneous bacterial peritonitis is a major cause of mortality after liver cirrhosis. Altered
permeability of the mucosa and deficiencies in host immune defenses through bacterial
translocation from the intestine due to intestinal bacterial overgrowth have been implicated
in the development of this complication. Molecular mechanisms underlying the process are
not well known. In order to understand mechanisms involved in translocation of bacteria,
this study explored the role of oxidative stress in mediating changes in intestinal mucosal
glycosylation and luminal bacterial content during cirrhosis. CCl4-induced cirrhosis in rats
led to prolonged oxidative stress in the intestine, accompanied by increased sugar content of
both intestinal brush border and surfactant layers. This was accompanied by changes in
bacterial flora in the gut, which showed increased hydrophobicity and adherence to the
mucosa. Inhibition of xanthine oxidase using sodium tungstate or antioxidant supplemen-
tation using vitamin E reversed the oxidative stress, changes in brush border membrane
sugar content, and bacterial adherence. In conclusion, oxidative stress in the intestine during
cirrhosis alters mucosal glycosylation, accompanied by an increased hydrophobicity of lu-
minal bacteria, enabling increased bacterial adherence onto epithelial cells. This might
facilitate translocation across the mucosa, resulting in complications such as spontaneous
bacterial peritonitis. (HEPATOLOGY 2006;43:837-846.)

Liver cirrhosis is a pathological condition that re-
flects irreversible chronic injury of the hepatic pa-
renchyma in association with extensive fibrosis.

Bacterial infection is responsible for up to one quarter of
the deaths of patients with chronic liver disease.1 Sponta-
neous bacterial peritonitis (SBP) is a common and serious
infection developing in patients with cirrhosis, which is
thought to appear as a consequence of impaired defense
mechanisms against infection.2 Clinical and experimental
evidence indicate that translocation of bacteria from the

intestinal lumen to the bloodstream is directly involved in
the pathogenesis of SBP.3 The gastrointestinal tract is
affected during cirrhosis, and mucosal abnormalities sec-
ondary to portal hypertension may exist.4 A number of
mechanisms have been suggested to promote bacterial
translocation from the intestine, including intestinal bac-
terial overgrowth, altered permeability of the intestinal
mucosa, and deficiencies in host immune defenses.5-7 Al-
though SBP may be caused predominantly by enteric or-
ganisms,2 the factors that favor bacterial translocation in
cirrhosis are not completely understood. Attachment of
luminal bacteria on the mucosal surface, which facilitates
translocation, is mediated by sugars present on cellular
glycoproteins and glycolipids.8 Changes in glycosylation
on the surface of intestinal epithelial cells can thus lead to
increased bacterial adherence. Reactive oxygen species can
modulate glycosylation on the cell surface9 and also alter
the surface viscosity of the mucus,10 both of which may
facilitate bacterial binding. Earlier studies from our labo-
ratory have shown that oxidative stress in the intestinal
mucosa after surgical manipulation results in altered gly-
cosylation of the mucosal membranes and bacterial adher-
ence.11 Oxidative stress has also been demonstrated in the

Abbreviations: SBP, spontaneous bacterial peritonitis; BBM, brush border mem-
brane; cfu, colony-forming units; PBS, phosphate-buffered saline.
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intestinal mucosa after carbon tetrachloride (CCl4)-in-
duced liver cirrhosis,12 where the activity of xanthine ox-
idase, an important source of free radicals in the small
intestine,13 was also elevated. These data led to the hy-
pothesis that oxidative stress in the intestine during liver
cirrhosis, produced by activation of xanthine oxidase,
might alter glycosylation patterns on the intestinal mu-
cosa and influence bacterial binding. To test this hypoth-
esis, this study aims to examine xanthine oxidase and
oxidative stress in the intestine during development of
cirrhosis and determine its influence on bacterial interac-
tion with the intestine. The role of oxidative stress in
influencing bacterial interactions was confirmed by use of
xanthine oxidase inhibitors and anti-oxidant therapy with
vitamin E.

Materials and Methods
Adenosine diphosphate, dimethyl sulfoxide, MTT

(3-[4.5-dimethyl thiazol-2-yl]-2,5-diphenyltetrazolium
bromide), 1,1�, 3,3�-tetramethoxy propane, Tris (hy-
droxymethyl) aminomethane (Tris), N- [2-hydroxyethyl]
peperazine-n�- [2—ethanesulfonic acid], thiobarbituric
acid, dithio-bis- (2-nitrobenzoic acid), 2,4-dinitrophenyl
hydrazine, ArsenazoIII, succinic acid, iodo-nitro tetrazo-
lium salt, para nitro phenyl phosphate, xanthine, xan-
thine oxidase, glucose oxidase, 1,1�,3,3� tetramethoxy
propane, and hydroxy proline were obtained from Sigma
Chemical Co. (St. Louis, MO). Carbon tetrachloride, vi-
tamin E, and sodium tungstate were obtained from
Qualigen Fine Chemicals, Ltd. Mumbai, India, Loba
Chemicals, Mumbai, India, and The British Drug
Houses, London, respectively. Polyethylene glycol 4000
was obtained from Fluka AG. Switzerland. 14C-labeled
glucose was obtained from Bhaba Atomic Research Cen-
ter, Bombay, India. Millipore membranes (0.45 �m)
were obtained from Millipore, India. All other chemicals
and solvents used were of analytical grade.

Animals. Adult Wistar rats of both the sexes (125-150
g), exposed to a daily 12-hour light/dark cycle and fed
water and rat chow ad libitum, were used for this study.
Rats were divided into seven groups (I-VII); each group
comprised six animals at each of the different time points:
group I, control; group II, phenobarbitone controls;
group III, sodium tungstate control; group IV, tocoph-
erol control; group V, CCl4 treatment alone, group VI,
sodium tungstate � CCl4; group VII, tocopherol �
CCl4. This study was approved by The Animal Experi-
mentation Ethics Committee of the institution.

Induction of Liver Cirrhosis in Rats. Cirrhosis was
induced by administering CCl4 intragastrically. The ini-
tial dose of CCl4 was 40 �L/rat, and subsequent doses
were adjusted based on the change in body weight as

described.14 Control animals received phenobarbitone
alone.15 Animals were killed at 1, 2, 3, 4, and 5 months
after CCl4 treatment.

Sodium Tungstate Treatment and Vitamin E Sup-
plementation. Sodium tungstate (0.7 g/kg body weight,
in the drinking water) and tocopheral acetate (300 mg/kg
diet mixed with rat chow), were coadministered with
CCl4 from the end of the 2nd month for a period of 1
month. Control animals received sodium tungstate alone
or tocopherol acetate alone for 1 month. For all studies
with inhibitors, animals were killed after 3 months of
CCl4 treatment (the time point when maximal changes
were evident), and the effect of sodium tungstate co-treat-
ment and vitamin E supplementation was compared with
CCl4 alone.

Histology and Measurement of Hydroxyproline and
Serum Parameters. Liver tissue was fixed in 10% buff-
ered formalin and processed. Four-micron sections were
cut and stained with hematoxylin-eosin and observed un-
der a light microscope. Hepatic hydroxy proline content
was measured as described16 and expressed as micrograms
hydroxyproline per grams wet weight of liver tissue. Se-
rum was used for the assay of alanine aminotransferase,
aspartate aminotransferase,17 alkaline phosphatase,18 total
bilirubin,19 and total protein.20

Intestinal Mitochondrial Preparation and Assess-
ment of Function. The whole intestine from both con-
trol and rats with cirrhosis was divided into two portions.
Scraped intestinal mucosa from the duodenum and prox-
imal part of the jejunum were used for preparation of
mitochondria by differential centrifugation as de-
scribed.21 Mitochondrial function was assessed by oxygen
uptake,22 swelling,23 and MTT reduction.24

Isolation of Surfactant, Brush Border Membranes
and Measurement of D-Glucose Uptake and Carbo-
hydrate Content. The distal part of the jejunum and the
ileum of control and CCl4-treated rats was used for the
isolation of brush border membranes (BBM) and surfac-
tant as described earlier.25,26 Purity of the isolated BBM
was checked by enrichment of the marker enzyme alkaline
phosphatase. Isolated BBM were assessed for their ability
to transport glucose by uptake measurements carried out
using the rapid filtration technique, at room temperature
as described.27 Hexoses, fucose,28 sialic acid,29 and hex-
osamine content30 of surfactant and BBM were deter-
mined as described and expressed as nanomoles per
milligram protein.

Oxidative Stress Parameters. Intestinal homogenate
and BBM were used for assessment of oxidative stress
parameters. Malonaldehyde,31 conjugated diene,32 and
protein carbonyl content33 were measured as described
and expressed as nanomoles per milligram protein.
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Enzyme Assays. Alkaline phosphatase activity in the
BBM was assayed using p-nitrophenyl phosphate as sub-
strate.18 Xanthine oxidase activity in the intestinal ho-
mogenate was measured, as described.34

Bacterial Counts and Harvesting of Escherichia
coli Strains From Cecal Contents and Cecal Mucosa.
Cecal mucosa and cecal contents were harvested from the
sacrificed animals under sterile conditions. The number
of aerobic and anaerobic bacteria in the cecum were
counted after serial dilution in saline and calculated as
colony-forming units (cfu) per gram contents. The media
used for aerobic count included blood agar and MacCo-
nkey agar. For anaerobic count, neomycin blood agar, 5%
sheep blood agar without nutrient agar base, Veillonella
agar, and Rogosa SL agar medium were used. Escherichia
coli strains, identified using standard microbiological
techniques, were isolated from specimens grown on Mc-
Conkey’s media. Pools of five isolates of E. coli from each
of the different groups were catalogued and frozen in
cryoprotective media. These groups of isolates were used
for adherence studies. Cecal tissue was washed gently in
sterile saline to remove non-adherent bacteria, and ap-
proximately 1 cm2 of the cecal tissue was cut. The cecal
mucosa was then homogenized in 1 mL sterile saline, and
the homogenate was subjected to quantitative culture
analysis as described previously. The number of adherent
bacteria present in the cecal mucosa was expressed as per-
centage difference compared with control, calculated
from cfu per square centimeter tissue.

Bacterial Adherence. The assay was carried out as
previously described,35 using HEp-2 cell monolayers
grown overnight on 10 spot multitest slides (ICN Bio-
medicals, Aurora, OH). Forty microliters of the overnight
bacterial culture of E. coli from each group (5 � 105 cfu
grown in Luria broth) was added to 0.5 mL minimum
essential medium containing 2% fetal calf serum and 1%
methyl-alpha-mannoside; 50 �L of this was overlaid onto
each test spot. The slides were then incubated at 37°C
with 5% carbon dioxide for 3 hours, washed 3 with min-
imum essential medium, fixed with 70% ethanol, and
stained with 10% Giemsa stain. The slides were examined
under the oil immersion lens of a light microscope.

Hydrophobicity Assay. Cell surface hydrophobicity
was measured by bacterial adherence to hexadecane.36 E.
coli were grown in Luria broth to approximately mid log
phase, collected by centrifugation, and washed twice in
phosphate-buffered saline (PBS), pH 7.0. Washed cells
were resuspended in 1 mL PBS, and optical density at 620
nm was measured. This measurement served as the con-
trol (Co). Subsequently, 200 �L hexadecane was added,
and the mixture was vortexed for 1 minute. After the
phases were allowed to separate, the optical density of the

lower aqueous phase was measured (CH). The percentage
hydrocarbon adherence was determined by the following
formula: [(Co � CH)/Co] � 100.

In Vitro Bacterial Adherence Assay. Bacterial adhe-
sion to surfactant or BBM was carried out using poly
L-lysine–coated microtiter plates. To each well on the
plate, surfactant or BBM corresponding to 30 �g protein
was added and allowed to stand at room temperature for
20 minutes; unbound material was removed and washed
twice with PBS. This resulted in coating of approximately

Fig. 1. Light microscopy of liver from controls (A), phenobarbitone
control (B), and CCl4-treated rats (C) after 3 months. Original magnifi-
cation �30.
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40% to 50% of the surfactant and 20% to 30% of BBM
of the added material in each well. Subsequently, 0.1 mL
E. coli isolated from cecal content of normal rats corre-
sponding to 3 � 106 bacteria was added to each coated
well and allowed to stand for 30 minutes at room temper-
ature. The material was removed from the wells and un-
bound bacteria quantitated by subculturing in
MacConkey plates. The number of colonies formed was
counted and the percentage of bound bacteria calculated
as follows:
Total No. of Bacteria � unbound bacteria � bound bac-
teria.
Bound bacteria/total no. of bacteria � % of bacteria
bound to the sample.

E. coli bound to surfactant and BBM in the wells was
also quantitated using crystal violet staining.37

Statistical Analysis. Data are expressed as means �
SD. Statistical analysis was performed with the non-para-
metric Mann-Whitney test. A P value of less than .05 was
taken to indicate statistical significance. Statistical calcu-
lations were performed using SPSS software for Windows
(version 9.0; SPSS Inc., Chicago, IL).

Results
Liver cirrhosis was established by histology and serum

markers of liver injury in animals treated with CCl4. In-
tragastric administration of CCl4 showed micronodular
cirrhosis with extensive fibrosis after 3 month of treat-
ment (Fig. 1). Serum markers for liver injury such as
alanine aminotransferase, aspartate aminotransferase, al-
kaline phosphatase, and total bilirubin were also found to
be increased significantly in rats treated with CCl4 by 3
months after treatment (Table 1), accompanied by an
increase in liver hydroxy proline content (an indicator of
fibrosis) (Table 1). Serum enzymes and liver hydroxy pro-
line stayed elevated even at 5 months, indicating that in
this model frank cirrhosis was established by 3 months
and sustained at 5 months.

Our earlier work had shown a significant increase in
xanthine oxidase activity in the intestine at the 3-month

point in rats with cirrhosis. Because this enzyme is an
important source of free radicals in the intestine, we car-
ried out a time course study examining enzyme activity
before and after development of frank cirrhosis. As seen in
Fig. 2A, xanthine oxidase activity starts to increase be-

Table 1. Serum Markers for Liver Damage in Control and CCL4-Treated Rats After 1, 3, and 5 Months

Control

Carbon Tetrachloride Treatment

1 month 3 months 5 months

Alanine aminotransferase (IU/L) 140 � 2 155 � 5 621 � 56* 679 � 62*
Aspartate aminotransferase (IU/L) 133 � 2 146 � 4 715 � 68* 741 � 50*
Alkaline phosphatase (IU/L) 85 � 10 95 � 10 401 � 52* 392 � 15*
Total bilirubin (�mol/L) 16.5 � 4 18.5 � 4 61 � 4* 86 � 5*
Total protein (g/dL) 9.1 � 0.23 9.1 � 0.23 3.12 � 0.13* 3.1 � 0.2*
Hepatic hydroxyproline content

(�g/g wet weight of liver tissue) 201 � 11 212 � 11 950 � 88* 1,060 � 120*

*P � .05 when compared with control.

Fig. 2. Activity of xanthine oxidase (A) and oxidative stress parame-
ters; malonaldehyde (B), conjugated diene (C), and protein carbonyl
content (D) in intestinal homogenate from rats treated with CCl4 for 1, 2,
3, 4, and 5 months, compared with phenobarbitone-treated controls.
Malonaldehyde (E), conjugated diene (F), and protein carbonyl content
(G) in intestinal homogenate from rats treated with CCl4, CCl4 � sodium
tungstate, and CCl4 � vitamin E, compared with phenobarbitone, sodium
tungstate, and vitamin E–treated controls. The assays were done as
described in the text. Each value represents mean � SD from six
separate experiments. *P � .05, when compared with control, #P �
.05, when compared with CCl4-treated rats.
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tween 2 and 3 months of CCl4 treatment, peaks at 4
months, and stays elevated until 5 months. Oxidative
stress parameters in the mucosal homogenate during this
period showed a gradual increase in malondialdehyde,
conjugated diene, and protein carbonyls between 3 and 5
months after treatment (Fig. 2B-D). To confirm the role
of xanthine oxidase and oxidative stress, and also establish
a cause-and-effect relationship, experiments were re-
peated with xanthine-oxidase–deficient animals or long-
term antioxidant therapy with vitamin E. These
experiments were performed 3 months after CCl4 treat-
ment, the point when maximal changes were evident. As
seen in Fig. 2E-G, both sodium tungstate treatment (to
inhibit xanthine oxidase) and vitamin E reversed the oxi-
dative stress in the intestinal mucosa. No xanthine oxidase
activity could be detected in animals treated with sodium
tungstate (data not shown). Another important source
and target of free radicals in the cell are the mitochondria.
There was functional impairment of intestinal mitochon-
dria in rats with cirrhosis, with a decreased respiratory
control ratio, increased superoxide production (measured
by MTT reduction), and mitochondrial swelling by 3
months after treatment, which continued until 5 months

(Fig. 3). Mitochondrial lipid peroxidation was also evi-
dent, with increases in malondialdehyde, conjugated
diene, and protein carbonyl levels starting at 2 months
and continuing until 5 months (data not shown).

The BBM are important functional components of the
intestine and in direct contact with luminal contents. A
decrease in activity of the BBM enzyme alkaline phospha-
tase was seen in rats with cirrhosis by 3 months’ treatment
(Fig. 4A), whereas the activity of sucrase and maltase was
unaltered (data not shown). Oxidative stress markers such
as malondialdehyde, conjugated diene, and protein car-
bonyls were increased in BBM of rats with cirrhosis by 3
months of treatment and stayed elevated at 5 months
(Fig. 4B-D). The decrease in alkaline phosphatase activity
as well as oxidative stress in the intestinal BBM after 3
months CCl4 treatment were reversed by the sodium

Fig. 3. Mitochondrial functional parameters; respiratory control ratio
(A), mitochondrial swelling (B), and MTT reduction (C) from rats treated
with CCl4 for 1, 2, 3, 4, and 5 months, compared with phenobarbitone-
treated controls. The assays were done as described in the text. Each
value represents mean � SD from six separate experiments. *P � .05,
when compared with control.

Fig. 4. Alkaline phosphatase activity (A) and oxidative stress par-
ameters; malonaldehyde (B), conjugated diene (C), and protein carbonyl
content (D) in BBM isolated from rats treated with CCl4 for 1, 2, 3, 4, and
5 months, compared with phenobarbitone-treated controls. Alkaline
phosphatase activity (E), malonaldehyde (F), conjugated diene (G), and
protein carbonyl content (H) in BBM isolated from rats treated with CCl4,
CCl4 � sodium tungstate, and CCl4 � vitamin E, compared with pheno-
barbitone, sodium tungstate, and vitamin E–treated controls. The assays
were done as described in the text. Each value represents mean � SD
from six separate experiments. *P � .05, when compared with control,
#P � .05, when compared with CCL4-treated rats.
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tungstate treatment or vitamin E supplementation (Fig.
4E-H ).

Functional capacity of the BBM was also affected, with
a significant decrease in glucose transport by 3 months
after CCl4 treatment, continuing until 5 months (14C
D-glucose uptake at 20 seconds, expressed as pmoles/mg
protein in controls vs. CCl4-treated rats for 1, 3, and 5
months were 310 � 23* vs. 316 � 15*, 244 � 22, and
228 � 10*, respectively, *P � .05). Animals fed pheno-
barbitone alone were similar to the controls in all param-
eters examined.

Bacterial binding to the epithelium is mediated by
receptors that are sugar specific, and these play a crucial
role in bacterial translocation. Bacterial binding thus
can be modulated by the sugar content of the BBM and
surfactant layer, which covers the intestinal mucosa.
Figure 5 shows the sugar content of BBM isolated from
control and CCl4 treated rats at various points. An
increase in sialic acid, fucose, hexose, and hexosamine

is evident in rats with cirrhosis beginning at 3 months
and extending to 5 months of treatment. Similar
changes also were present in the surfactant layer (data
not shown). Treatment with either sodium tungstate
(to inhibit xanthine oxidase) or vitamin E reversed the
sugar changes in the BBM after 3 months’ CCl4 treat-
ment (Fig. 5).

One of the major complications of liver cirrhosis is
SBP, and it has been suggested that gut is the major source
of bacteria in SBP. In our study, ascites was seen in 20%,
60%, and 100% of the animal treated with CCl4 by 3, 4,
and 5 months, respectively, whereas infection of ascitic

Fig. 5. Sugar composition of BBM; Sialic acid (A), fucose (B), hexose
(C), and hexosamine (D) from rats treated with CCl4 for 1, 2, 3, 4, and
5 months, compared with phenobarbitone-treated controls. Sialic acid
(D), fucose (E), and hexose (F) from rats treated with CCl4, CCl4 �
sodium tungstate, and CCl4 � Vitamin E, compared with phenobarbitone,
sodium tungstate, and vitamin E–treated controls. The assays were done
as described in the text. Each value represents mean � SD from six
separate experiments. *P � .05, when compared with control, #P �
.05, when compared with CCl4-treated rats.

Fig. 6. Bacterial counts in cecal contents; E. coli (A), bacteroides (B),
percentage hydrocarbon adherence of E. coli (C), and number of adher-
ent E. coli per cm2 of cecal mucosa (D) from rats treated with CCl4 for 1,
2, 3, 4, and 5 months, expressed as percent difference compared with
their respective phenobarbitone-treated controls. *P � .05, when com-
pared with control. Binding of normal cecal E. coli to mucosa with
cirrhosis: Crystal violet staining to detect bacteria bound to BBM (E) and
surfactant (F) isolated from cirrhotic animals at 1, 2, 3, 4, and 5 months,
compared with phenobarbitone-treated controls. (G) Crystal violet stain-
ing to demonstrate the inhibitory effect of various sugars on the binding
of normal cecal E. coli onto surfactant isolated from animals with
cirrhosis at 3 months. (H) Crystal violet staining of normal cecal E. coli
to mucosa from rats with cirrhosis treated with CCl4, CCl4 � sodium
tungstate, and CCl4 � vitamin E, compared with phenobarbitone, sodium
tungstate, and vitamin E–treated controls. The assays were done as
described in the text. Each value represents mean � SD from six
separate experiments. *P � .05, when compared with control, #P �
.05, when compared with CCl4-treated rats.

842 NATARAJAN ET AL. HEPATOLOGY, April 2006



fluid was only seen in 60% of the animals by 5 months.
This indicates that translocation of bacteria is a late event.
Further studies were then performed to evaluate intestinal
flora during development of cirrhosis. Cecal contents iso-
lated from control animals showed both aerobic and an-
aerobic bacteria. Liver cirrhosis induced changes in the
aerobic bacteria such as E. coli and anaerobes such as
Bacteriodes, with a significant increase in numbers after
development of cirrhosis (Fig. 6A-B). Bacterial adherence
can be facilitated by changes in the cell surface hydropho-
bicity, and this was measured by bacterial adherence to
hexadecane. As seen in Fig. 6C, bacterial hydrophobicity
was increased significantly in E. coli isolated 4 months
after CCl4 treatment, a characteristic that continued until
5 months. The commensal bacteria in the intestine from
rats with cirrhosis were also more adherent to the mucosa;
E. coli counts increased over time in the cecal tissue of
CCl4-treated animals when compared with controls (Fig.
6D). Analysis of the aggregative adherence pattern of E.
coli isolated from animals with cirrhosis to HEp-2 cells in
culture showed a three- to fourfold increase when com-
pared with controls (data not shown). This paralleled the
increase in hydrophobicity, as would be expected.38

To determine whether the alteration in sugar content
on the intestinal mucosa could influence bacterial bind-
ing, we then performed in vitro assays to study the inter-
action of normal E. coli with surfactant or BBM isolated
from rats with cirrhosis coated onto microtiter plates.
Bacterial adherence was quantitated by two methods:
measuring bound bacteria by dye-binding and unbound
bacteria by sub-culturing the supernatant from the wells.
Bacterial binding occurred only with BBM (Fig. 6E) or
surfactant (Fig. 6F) isolated from animals with cirrhosis,
as seen by increase in optical density of crystal violet stain-
ing. Similar results were obtained by sub-culturing of the
unbound bacteria (data not shown). The binding of E.
coli with the BBM from animals with cirrhosis at 3
months was significantly inhibited by inhibition of xan-
thine oxidase (sodium tungstate treatment) or vitamin E
supplementation (Fig. 6H), indicating the importance of
oxidative stress in this process. To further characterize the
specificity of binding, bacteria pretreated with different
sugars were allowed to bind to surfactant isolated from
rats with cirrhosis after 3 months of treatment. Bacterial
binding to surfactant was inhibited 80% to 90% in the
presence of mannose, galactose, and fucose, whereas this
inhibition was not seen in the presence of glucose or glu-
cosamine (Fig. 6G).

Discussion
Complications such as portal hypertension and spon-

taneous bacterial peritonitis (SBP) are major causes of

death after liver cirrhosis.1 Gastrointestinal functions
such as motility are affected during cirrhosis, and mucosal
abnormalities secondary to portal hypertension exist.39,40

In the current study, although ascites was seen in animals
even at 3 months when frank cirrhosis was evident, infec-
tion of ascitic fluid was seen only in the 5th month. Com-
plications such as SBP occur long after development of
frank cirrhosis, and bacterial overgrowth due to compro-
mised intestinal motility may facilitate translocation in
SBP.41,42 A number of factors may play a role in mediat-
ing bacterial translocation across the intestine during liver
cirrhosis. These include (1) damage to the intestinal mu-
cosa; (2) changes on the surfactant and brush border
membranes lining the lumen of the gut, making them
amenable to bacterial adhesion; and (3) changes in the
luminal gut flora, which might alter adherence to the
mucosa. This study examines each of these factors during
the course of development of liver cirrhosis.

We demonstrated earlier that liver cirrhosis results in
significant oxidative stress in the intestine.12 Important
sources of free radicals in the intestinal epithelium are the
enzyme xanthine oxidase in the mucosa and enterocyte
mitochondria. We examined xanthine oxidase activity in
the intestinal mucosa and found that the increase in ac-
tivity evident by 2 months of treatment is more pro-
nounced by 3 months, when the serum enzyme profile
indicated liver damage and frank cirrhosis was histologi-
cally evident. However, changes such as lipid peroxida-
tion, which are the consequence of oxidative stress, were
obvious only by 3 months, and then progressively in-
creased up to 5 months. This indicates that the initial
oxidative stress results in tissue damage, which persists
even after establishment of changes in cirrhosis. The im-
portance of xanthine oxidase activation and the resultant
oxidative stress was confirmed by the experiments with
xanthine oxidase deficient or vitamin E–supplemented
animals. At the subcellular level, mitochondrial function
is affected early, by 2 months. This indicates that the
mitochondria are one of the early targets for damage in
cirrhosis, because mitochondrial lipid peroxidation pre-
cedes the damage at the cellular level.

The second factor that could influence bacterial adhe-
sion is the intestinal BBM, which is the first line of defense
against bacterial translocation across the mucosal barrier.
In the current study, oxidative stress resulted in damage of
BBM as indicated by lipid peroxidation, which also com-
promised glucose transport by 3 months of treatment
with CCl4 and persisted till 5 months. Thus, oxidative
stress initiated by activation of xanthine oxidase and mi-
tochondrial dysfunction might be an important event
leading to early mucosal damage, though frank liver cir-
rhosis is evident only after 3 months and the data from the
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xanthine oxidase–deficient and vitamin E–supplemented
animals, which showed protection against oxidative dam-
age in the BBM reiterate the role of oxidative stress in the
process.

Bacterial adherence is accomplished by specific ad-
hesins on the outer surface of bacteria that attach to
receptors containing sugars such as sialic acid, hexose,
fucose, and amino sugars on the surface of the epithe-
lial cell.43,44 Studies have shown a role for sialic acid
and sugars present on mucosal surfaces as receptors for
microorganisms.9 We find a significant increase in
sialic acid, fucose, hexose, and hexosamine in surfac-
tant and BBM in rats only at 3 months after initiation
of CCl4 treatment, which continued to increase until 5
months. These changes could be the result of the oxi-
dative stress, because free radicals can modulate the
activity of glycosyltransferase or glycosidases, which
might in turn alter glycosylation pattern.8,10 Free rad-
icals also can affect surface viscosity of the mucus as
shown in the gastric mucosa,45 and this may facilitate
bacterial binding. The role of oxidative stress in in-
creasing sugar content of BBM was also confirmed by
studies with xanthine oxidase– deficient animals and
vitamin E supplementation, which offered significant
protection against this.

The data indicate intestinal mucosal damage seen
during cirrhosis is associated with changes in mucosal
surface glycosylation, which might facilitate bacterial
adherence. Do changes in the gut bacterial population
occur in cirrhosis? Under normal conditions, bacteria
present in the lumen of the gastrointestinal tract re-
main relatively free of contact with mucosal epithelial
cells as a result of a highly evolved mucosal defense
system.46 However, small intestinal bacterial over-
growth, depression of hepatic monocyte macrophage
functions, and reduction of serum and ascitic fluid
complement levels may contribute to increased inci-
dence of bacterial infections in cirrhosis.6 Studies have
shown in rats with cirrhosis, bacterial translocation re-
sults from intestinal overgrowth and severe damage to
gut permeability,40 and our data indicate a gradual in-
crease in the population of Bacteroides in the intestine
from 1 to 5 months during development of cirrhosis.
However, E. coli populations showed an interesting
trend: within a month after initiation of CCl4 treat-
ment, a decrease in numbers occurred in the gut as well
as on the mucosa. This is probably due to the direct
toxic effect of the compound. By 2 months, the gut
flora adapt to the insult and the population increases,
overtaking the initial numbers due to rapid prolifera-
tion. Thus, numbers increase both in the cecum and in

the mucosa. By 3 months, a decrease occurs in the cecal
E. coli population, accompanied by an increase in num-
bers bound to the mucosa. As mentioned earlier, a
significant increase in sialic acid, fucose, hexose, and
hexosamine in surfactant and BBM was seen only at 3
months after initiation of CCl4 treatment. It is possible
that the population pattern of E. coli seen at 3 months
could be due to an increased binding of cecal bacteria
to the mucosa, resulting in lower numbers in the ce-
cum. By 4 months, bacterial overgrowth is established,
probably due to decreased intestinal motility. This is
evident in the increase in numbers for both cecal bac-
teria and bacteria bound to the mucosa. This condition
then persists at 5 months, by which time ascites is also
present, and a significant percentage of animals have
infected ascitic fluid indicating bacterial translocation.

The importance of these changes on both bacteria as
well as the mucosa was then confirmed by the next
series of experiments, which examined bacterial adher-
ence in more detail. The in vitro experiments using
microtiter plates coated with surfactant and BBM iso-
lated from rats with cirrhosis indicate that these sur-
faces are more amenable to bacterial adherence when
compared with control and confirm that the changes in
sugar content of the mucosa affect bacterial binding.
We have earlier reported that surgical stress in the small
intestine produces similar changes, with increased bac-
terial adherence to mucosa from surgically stressed an-
imals.11 In addition to the changes in the mucosa,
adherence is facilitated by the increased hydrophobic-
ity seen in bacteria from rats with cirrhosis. The role of
this bacterial factor in increasing adherence was con-
firmed by the in vitro experiments where bacteria from
rats with cirrhosis showed increased adherence to cells
in culture as well. The fact that the increased in vitro
bacterial adherence was reversed by inhibition of xan-
thine oxidase or vitamin E supplementation confirms
the role of oxidative stress in these intestinal alterations
during liver cirrhosis. Bacterial adherence was also
sugar specific, because galactose, fucose, and mannose
were able to inhibit this, whereas glucose and glu-
cosamine did not have any effect.

In conclusion, this study has shown that oxidative
stress in the intestine during liver cirrhosis has far-reach-
ing consequences during later stages of the disease. The
persistent cellular and subcellular damage results in alter-
ations in the gut flora, with increased bacterial adherence
and increased bacterial hydrophobicity. This is accompa-
nied by alteration in the glycosylation pattern in the in-
testinal mucosa. These changes, which occur later in the
disease, might influence bacterial adherence onto the ep-
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ithelial cells and facilitate translocation across the mucosa,
resulting in complications such as SBP.
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