9,463 research outputs found

    On Measuring the Relative Importance of Explanatory Variables in a Logistic Regression

    Get PDF
    A search is described for valid methods of assessing the importance of explanatory variables in logistic regression, motivated by earlier work on the relationship between corporate governance variables and the issuance of restricted voting shares (RSF). The methods explored are adaptations of Pratt’s (1987) approach for measuring variable importance in simple linear regression, which is based on a special partition of R2. Pseudo-R2 measures for logistic regression are briefly reviewed, and two measures are selected which can be partitioned in a manner analogous to that used by Pratt. One of these is ultimately selected for the variable importance analysis of the RSF data based on its small sample stability. Confidence intervals for variable importance are obtained using the bootstrap method, and used to draw conclusions regarding the relative importance of the corporate governance variables

    ADOPTION OF SUPPLEMENTAL WORK-AT-HOME: A COMPARATIVE ANALYSIS

    Get PDF
    The primary purpose of this study is to develop a deeper understanding of the dynamics of the adoption of SWAH. Specifically, it examines how the work and family environments of dual-career male and female and traditional male parents who perform SWAH differ from the work and family environments of their cohorts who do not. People who perform SWAH were found to work significantly more hours per week and more hours at home than those who did not adopt SWAH. The data indicates that men and women who have higher level more challenging jobs (Le., greater work expectations and lower role clarity) were more likely to adopt SWAH than were men and women with fewer career demands. There were no significant differences in the family environments of men who did and did not adopt SWAH. Perceived family responsibility (i.e., family involvement, family expectations) was associated with a woman\u27s tendency to adopt SWAH

    Specialty Vegetables in Texas.

    Get PDF
    16 p

    From Isotopes to TK Interviews: Towards Interdisciplinary Research in Fort Resolution and the Slave River Delta, Northwest Territories

    Get PDF
    Evolving research in Fort Resolution and the Slave River Delta, Northwest Territories, aims to improve understanding of how the natural ecosystem functions and responds to various environmental stressors, as well as to enhance the stewardship of natural resources and the capacity of local residents to respond to change. We seek to integrate approaches that span the natural and social sciences and traditional knowledge understandings of change, employing a research design developed in response to the concerns of a northern community. In doing so, we have strived for a research process that is collaborative, interdisciplinary, policy-oriented, and reflective of northern priorities. These elements characterize the new northern research paradigm increasingly promoted by various federal funding agencies, northern partners, and communities. They represent a holistic perspective in the pursuit of solutions to address complex environmental and socioeconomic concerns about impacts of climate change and resource development on northern societies. However, efforts to fulfill the objectives of this research paradigm are associated with a host of on-the-ground challenges. These challenges include (but are not restricted to) developing effective community partnerships and collaboration and documenting change through interdisciplinary approaches. Here we provide an overview of the components that comprise our interdisciplinary research program and offer an accounting of our formative experiences in confronting these challenges

    The Orbit of the Eclipsing X-ray Pulsar EXO 1722-363

    Get PDF
    With recent and archival Rossi X-Ray Timing Explorer (RXTE) X-ray measurements of the heavily obscured X-ray pulsar EXO 1722-363 (IGR J17252-3616), we carried out a pulse timing analysis to determine the orbital solution for the first time. The binary system is characterized by a_x sin(i) = 101 +/- 3 lt-s and P_orb = 9.7403 +/- 0.0004 days (90% confidence), with the precision of the orbital period being obtained by connecting datasets separated by more than 7 years (272 orbital cycles). The orbit is consistent with circular, and e < 0.19 at the 90% confidence level. The mass function is 11.7 +/- 1.2 M_sun and confirms that this source is a High Mass X-ray Binary (HMXB) system. The orbital period, along with the previously known ~414 s pulse period, places this system in the part of the Corbet diagram populated by supergiant wind accretors. Using previous eclipse time measurements by Corbet et al. and our orbital solution, combined with the assumption that the primary underfills its Roche lobe, we find i > 61 degrees at the 99% confidence level, the radius of the primary is between 21 R_sun and 37 R_sun, and its mass is less than about 22 M_sun. The acceptable range of radius and mass shows that the primary is probably a supergiant of spectral type B0I-B5I. Photometric measurements of its likely counterpart are consistent with the spectral type and luminosity if the distance to the system is between 5.3 kpc and 8.7 kpc. Spectral analysis of the pulsar as a function of orbital phase reveals an evolution of the hydrogen column density suggestive of dense filaments of gas in the downstream wake of the pulsar, with higher levels of absorption seen at orbital phases 0.5-1.0, as well as a variable Fe K_alpha line.Comment: Submitted to ApJ, 11 pages, 11 figure

    An INTEGRAL/SPI view of reticulum II: Particle dark matter and primordial black holes limits in the MeV range

    Get PDF
    © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stac008Reticulum II (Ret II) is a satellite galaxy of the Milky Way and presents a prime target to investigate the nature of dark matter (DM) because of its high mass-to-light ratio. We evaluate a dedicated INTEGRAL observation campaign data set to obtain γ\gamma-ray fluxes from Ret II and compare those with expectations from DM. Ret II is not detected in the γ\gamma-ray band 25--8000 keV, and we derive a flux limit of 108ergcm2s1\lesssim 10^{-8}\,\mathrm{erg\,cm^{-2}\,s^{-1}}. The previously reported 511 keV line is not seen, and we find a flux limit of 1.7×104phcm2s1\lesssim 1.7 \times 10^{-4}\,\mathrm{ph\,cm^{-2}\,s^{-1}}. We construct spectral models for primordial black hole (PBH) evaporation and annihilation/decay of particle DM, and subsequent annihilation of positrons produced in these processes. We exclude that the totality of DM in Ret II is made of a monochromatic distribution of PBHs of masses 8×1015g\lesssim 8 \times 10^{15}\,\mathrm{g}. Our limits on the velocity-averaged DM annihilation cross section into e+ee^+e^- are σv5×1028(mDM/MeV)2.5cm3s1\langle \sigma v \rangle \lesssim 5 \times 10^{-28} \left(m_{\rm DM} / \mathrm{MeV} \right)^{2.5}\,\mathrm{cm^3\,s^{-1}}. We conclude that analysing isolated targets in the MeV γ\gamma-ray band can set strong bounds on DM properties without multi-year data sets of the entire Milky Way, and encourage follow-up observations of Ret II and other dwarf galaxies.Peer reviewedFinal Accepted Versio

    Twinned-domain-induced magnonic modes in epitaxial LSMO/STO films

    Get PDF
    The use of periodic magnetic structures to control the magneto-dynamic properties of materials-Magnonics-is a rapidly developing field. In the last decade, a number of studies have shown that metallic films can be patterned or combined in patterns that give rise to well-defined magnetization modes, which are formed due to band folding or band gap effects. To explore and utilize these effects in a wide frequency range, it is necessary to pattern samples at the sub-micrometer scale. However, it is still a major challenge to produce low-loss magnonic structures with periodicities at such length scales. Here, we show that for a prototypical perovskite, La0.7 Sr0.3MnO3, the twinned structural order can be used to induce a magnetic modulation with a period smaller than 100 nm, demonstrating a bottomup approach for magnonic crystal growt

    High-Pitch Computed Tomography Coronary Angiography—A New Dose-Saving Algorithm: Estimation of Radiation Exposure

    Get PDF
    Purpose. To estimate effective dose and organ equivalent doses of prospective ECG-triggered high-pitch CTCA. Materials and Methods. For dose measurements, an Alderson-Rando phantom equipped with thermoluminescent dosimeters was used. The effective dose was calculated according to ICRP 103. Exposure was performed on a second-generation dual-source scanner (SOMATOM Definition Flash, Siemens Medical Solutions, Germany). The following scan parameters were used: 320 mAs per rotation, 100 and 120 kV, pitch 3.4 for prospectively ECG-triggered high-pitch CTCA, scan range of 13.5 cm, collimation 64 × 2 × 0.6 mm with z-flying focal spot, gantry rotation time 280 ms, and simulated heart rate of 60 beats per minute. Results. Depending on the applied tube potential, the effective whole-body dose of the cardiac scan ranged from 1.1 mSv to 1.6 mSv and from 1.2 to 1.8 mSv for males and females, respectively. The radiosensitive breast tissue in the range of the primary beam caused an increased female-specific effective dose of 8.6%±0.3% compared to males. Decreasing the tube potential, a significant reduction of the effective dose of 35.8% and 36.0% can be achieved for males and females, respectively (P < 0.001). Conclusion. The radiologist and the CT technician should be aware of this new dose-saving strategy to keep the radiation exposure as low as reasonablly achievable
    corecore