
Journal of Modern Applied Statistical
Methods

Volume 7 | Issue 1 Article 4

5-1-2008

On Measuring the Relative Importance of
Explanatory Variables in a Logistic Regression
D. Roland Thomas
Carleton University, rthomas@sprott.carleton.ca

PengCheng Zhu
Carelton University

Bruno D. Zumbo
University of British Columbia, bruno.zumbo@ubc.ca

Shantanu Dutta
University of Ontario Institute of Technology

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Thomas, D. Roland; Zhu, PengCheng; Zumbo, Bruno D.; and Dutta, Shantanu (2008) "On Measuring the Relative Importance of
Explanatory Variables in a Logistic Regression ," Journal of Modern Applied Statistical Methods: Vol. 7: Iss. 1, Article 4.
Available at: http://digitalcommons.wayne.edu/jmasm/vol7/iss1/4

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital Commons@Wayne State University

https://core.ac.uk/display/56683018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol7?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol7/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol7/iss1/4?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol7/iss1/4?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol7%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods   Copyright © 2008 JMASM, Inc. 
May, 2008, Vol. 7, No.1, 21-38                                                                                                                                 1538 – 9472/08/$95.00 

21 

Regular Articles 
On Measuring the Relative Importance of 

Explanatory Variables in a Logistic Regression 

 
         D. Roland Thomas             PengCheng Zhu 

Carleton University   Carleton University 
 

Bruno D. Zumbo   Shantanu Dutta 
University of British Columbia  St. Francis Xavier University 

 
 

A search is described for valid methods of assessing the importance of explanatory variables in logistic 
regression, motivated by earlier work on the relationship between corporate governance variables and the 
issuance of restricted voting shares (RSF).  The methods explored are adaptations of Pratt’s (1987) 
approach for measuring variable importance in simple linear regression, which is based on a special 
partition of R2.  Pseudo-R2  measures for logistic regression are briefly reviewed, and two measures are 
selected which can be partitioned in a manner analogous to that used by Pratt. One of these is ultimately 
selected for the variable importance analysis of the RSF data based on its small sample stability. 
Confidence intervals for variable importance are obtained using the bootstrap method, and used to draw 
conclusions regarding the relative importance of the corporate governance variables. 
 
Key words: Variable Importance, pseudo-R square, corporate governance. 
 
 

Introduction 
 
This article describes a search for statistical 
measures to answer the following applied 
question: How can one determine the relative 
importance of correlated explanatory variables 
in a logistic regression?  The case that has 
motivated this study features a sample of firms 
listed on the Toronto Stock Exchange, some of 
which issue restricted voting shares, while the 
remainder do not (Jog, Zhu, & Dutta 2006).  
 
_______________________________________ 
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Firms that have issued restricted shares to the 
market will henceforth be referred as restricted 
share firms (RSF) and the combined dataset 
featuring both types of firms will be referred to 
as the RSF dataset. 

In the case study, logistic regression is 
used to quantify the relationship between the 
issuance of restricted voting shares  (issue / do 
not issue) and three constructed measures of 
corporate governance, namely dispersion of 
ownership (DISP), suppression of shareholders 
interests (SUPP) and board independence 
(INDEP). The methods that will be constructed 
to assess the relative importance of these 
explanatory variables will be quite general and 
can be applied to a wide range of logistic 
regression problems. The performance of these 
methods will be evaluated on a constructed 
dataset that has known properties, and then 
applied to the RSF dataset. Practitioners 
frequently ask how to assess variable importance 
(Healy, 1990), and when the question relates to 
explanatory variables in logistic regression, the 
usual recommendation is to inspect  the relative 
magnitudes of the Wald statistics for individual 
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explanatory variables (or their square roots 
which can be interpreted as large sample z-
statistics). The problem with this and related 
approaches can be easily explained with 
reference to the governance example. For the 
explanatory variable DISP, its Wald statistic (or 
its square root z-statistic) shown in Table 3 is a 
measure of the contribution of DISP to the 
logistic regression, over and above the 
contribution of explanatory variables SUPP and 
INDEP. 

 Similarly, the Wald statistic for variable 
SUPP measures its contribution over and above 
variables DISP and INDEP. Clearly, it is not 
appropriate to use these two Wald statistics as 
measures of the relative contribution of  DISP 
and SUPP because the reference set of variables 
is different in both cases (SUPP and INDEP in 
the first case, and DISP and INDEP in the 
second case). The equivalent problem occurs in 
linear regression, i.e., the t-statistics (or 
corresponding p-values) for individual variables 
are not appropriate for assessing relative 
importance. Considerable attention has been 
paid to the problem of variable importance in 
linear regression, evidenced by the work of Pratt 
(1987), Kruskall (1987), Budescu (1993), 
Thomas, Hughes and Zumbo (1998), Azen, 
Budescu and Reiser (2001), Azen and Budescu 
(2003), Thomas, Zhu, and Decady (2007), and 
many others. 

Although the interpretational questions 
that arise in logistic regression are generally 
similar to those encountered in multiple 
regression (Hosmer & Lemeshow 2000), no 
comparable attention has been focused on the 
question of variable importance in the logistic 
case. The reason for this lack of attention is 
more likely due to the greater complexity of the 
logistic model than to any fundamental 
difference in interpretational requirements. This 
complexity is also reflected in measures of fit. 
For example, while R2 in multiple regression is a 
widely accepted and natural measure of model 
fit, which is easily computed and well 
understood, analogous measures for logistic 
regression are not as well known. Though 
several plausible pseudo-R2 measures have been 
proposed and compared for logistic regression 
(Windmeijer 1995; Mittlbock & Schemper 

1996), no one measure has yet been accepted as 
the standard. 

The issue of a pseudo-R2 for logistic 
regression is particularly relevant to the subject 
of this paper. One measure of variable 
importance in multiple regression that has been 
extensively discussed in the literature is defined 
in terms of the portion of “total variance 
explained” that is assigned to each variable.  The 
rule for partitioning R2 into its individual 
components, each representing variable 
importance, was axiomatically justified by Pratt 
(1987) and has also been given an easily 
generalized geometric interpretation by Thomas 
et al. (1998). Thus, to derive a measure of 
variable importance for logistic regression, it is 
natural to seek a pseudo-R2 measure for logistic 
regression that can be partitioned in an 
analogous way. It turns out that not all of the 
pseudo-R2 measures proposed to date are 
suitable for such partitioning. A brief review of 
the better known measures will be given, one of 
which (Laitila 1993; McKelvey & Zavoina 
1975) can be partitioned in a manner similar to 
that used by Pratt (1987).  An additional pseudo-
R2 measure based on a weighted least squares 
(WLS) representation of the maximum 
likelihood estimates (MLE) of the logistic 
regression parameters is also proposed in this 
paper. This WLS representation lends itself to 
partitioning using the geometric approach of 
Thomas et al. (1998), and so provides an 
alternative set of importance measures, 
henceforth referred to in this paper as VI indices.   

The article is organized as follows. First, 
the RSF example and dataset are described, 
along with results of the basic logistic regression 
analysis. Also described is a large synthetic 
dataset with population characteristics designed 
to mimic the sample data, and which will be 
used throughout to illustrate the properties of the 
various methods, and to guide the interpretation 
of the corporate governance case.  Next, Pratt’s 
(1987) axiomatically derived measure of 
importance for multiple regression is discussed, 
which will provide the basis for the various sets 
of VI indices developed in this paper. Specific 
attention will be paid to the geometric 
interpretation given by Thomas et al. (1998). 
Then, a brief account is given of the pseudo-R2 
measures proposed to date for logistic 
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regression, which (except for the method 
proposed by Laitila, 1993, and McKelvey & 
Zavoina1975) cannot be partitioned using either 
the axiomatic or the geometric approach.  

The pseudo-R2 measure based on the 
WLS representation of the logistic MLE is then 
described. VI indices for logistic regression 
based on the two pseudo-R2 measures that can be 
partitioned are then derived, and their particular 
characteristics are illustrated using the synthetic 
dataset.  Next, these VI indices are used to shed 
light on the relative importance of the three 
governance variables, DISP, SUPP and INDEP. 
This section also describes the bootstrapping  

 
 

techniques used to determine standard errors and 
confidence intervals for VI indices, which are 
then used to determine the final variable 
importance orderings.  Finally, an overview and 
recommendations for future research are given.  
 
Example Datasets 
Restricted Shares and Corporate Governance  

Restricted shares are a regular feature of 
the Canadian stock market, and unlike 
traditional common shares which usually carry 
one voting right per share, restricted shares have 
reduced voting rights and in some cases carry no  
voting rights at all. The issuance of restricted  
 
 

Table 1. Definition of Study Variables 
 

Variables Explanation

EXPAY CEO excess payment

BOARD_SIZE Size of company board of Directors

P_INS_DIR Percentage of internal Directors on company board

CEO_CHAIR If CEO is the Chairman of the board (Yes is 1, No is 0)

DIR_OWN Percentage of Director ownership

DIR_VOT Percentage of Director voting rights

COM_OWN Percentage of combined Director and Block ownership

COM_VOT Percentage of combined Director and Block voting rights

DIR_OWN_VOT Ratio of Director voting rights to Director ownership  
 

Table 2. Results of the Factor Analysis 
 

1 2 3
COM_OWN 0.331 -0.132 -0.159
DIR_OWN 0.311 -0.094 -0.031
COM_VOT 0.252 0.131 0.061
DIR_VOT 0.247 0.130 0.143
DIR_OWN_VOT -0.071 0.357 0.272
EXPAY 0.006 0.337 -0.145
BOARD_SIZE 0.017 0.335 -0.150
P_INS_DIR 0.002 0.000 0.510
CEO_CHAIR -0.034 0.053 0.517

        

Suppression of Shareholders' 
Interests

Board Independence

Component
Component Score Coefficient Matrix

Dispersion of Ownership and 
Voting Rights

Component Name

 
Note: Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser 

Normalization 
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shares to the public market reduces the access of 
non-management shareholders to shares that 
carry normal voting rights, so that a small 
number of shareholders (primarily the 
management group) can effectively control the 
corporate board. Increasing interest and concern 
about corporate governance mechanisms in 
RSFs is now being expressed not only by 
academic researchers but also by professionals 
and legislators, particularly in view of the many 
recent corporate scandals in North America. One 
of the many objectives of Jog, Zhu and Dutta’s 
(2006) study was to examine the relationship 
between various corporate governance 
characteristics and a firm’s propensity to issue 
restricted shares. The final dataset for analysis 
contained 95 Canadian firms that had restricted 
shares outstanding on the Toronto Stock 
Exchange (TSX) between September 1993 and 
December 2004. A comparison sample was 
randomly selected from among the TSX 
companies that had issued no restricted shares 
during those ten years, providing a combined 
RSF dataset of 202 firms. A variety of corporate 
finance and governance variables were 
collected, as catalogued in Table 1, and a 
preliminary analysis (not shown) showed the 
corporate governance variables to be 
significantly correlated.  

A factor analysis and a non-orthogonal 
“oblimin” rotation was carried out to provide a 
more succinct and interpretable representation of 
the variables of Table 1. From Table 2 it can be 
seen that a useful data summary is provided by 
three rotated corporate governance factors 
mentioned in the introduction, namely 
dispersion of ownership (DISP), suppression of 
shareholders interests (SUPP) and board 
independence (INDEP). The estimated 
correlations between these composites are: 
(DISP, SUPP) = .06; (DISP, INDEP) = .21 and 
(SUPP, INDEP) = -.07.  Using the SPSS 
program, scores for each of the corporate 
governance composite variables were generated 
using the “regression” method, and saved for 
subsequent logistic analysis. It should be noted 
that, in this analysis, no allowance is made for 
measurement errors arising from the estimation 
of governance variables that could be regarded 
as latent.  The sampling plan for the Jog et al. 
(2006) dataset comprises a case-control sample, 

in which all RSF firms but only a fraction of the 
non-RSF firms were sampled. However, it is 
well known (see Hosmer & Lemeshow 2000, p. 
178-181) that when the RSF indicator is treated 
as a binary random variable, consistent 
regression parameter estimates are obtained for 
the explanatory variables; only the estimate of 
the intercept parameter being inconsistent (or 
biased). 

Because Pratt’s (1987) variable 
importance measures do not depend on the 
intercept parameter, the case-control nature of 
the sample will not be a problem. Basic results 
for the logistic regression of the RSF indicator 
(RSF=1, non-RSF = 0) on the three composite 
governance variables are shown in Table 3. A 
Hosmer-Lemeshow goodness-of-fit test suggests 
that the model does fit the data (p = 0.31). 
 
A Synthetic Dataset 

A large synthetic dataset containing 
50,000 observations was randomly drawn from a 
population model designed to partially mimic 
the corporate governance example. The model 
features three explanatory variables, with  
regression parameters equal to the MLEs shown 
in Table 3, and with explanatory variable means 
and model covariance matrix set equal to the 
sample means and sample covariance matrix of 
the three corporate governance variables. Details 
of the probabilistic structure of the model, which 
generates samples that are exactly consistent 
with a logistic regression model, will be given 
later.  The synthetic dataset will be used to 
compare the various pseudo-R2 and 
corresponding sets of  VI indices that will be 
developed, free of the idiosyncrasies typically 
present in real data. This will facilitate the 
interpretation of the new measures when they 
are applied to the RSF data. 
 
Pratt’s Measure of Variable Importance for 
Multiple Linear Regression 

The methods used for developing the 
variable importance measures for logistic 
regression will all be adaptations of  Pratt’s 
(1987) linear regression method which 

comprises a particular partition of 2R . Pratt’s 
method will be outlined in this section given its 
central importance to the study. A more detailed 
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summary of Pratt’s method is given by Thomas, 
Zhu, and Decady (2007). 
 
 
The Axiomatic Approach 

Pratt (1987) considered a linear 
regression equation of the form 

 
            uxbxbby pp ++++= ...110             (1) 

 
where the disturbance term u is uncorrelated 
with x1, …, xp, and is distributed with mean zero 
and variance σ2. The total (standardized) 

population variance, 2
pR , explained by model 

(1) can be written as 
                     

                        jj jpR ρβ=2                     (2) 

 
where  βj is the usual standardized regression 
coefficient corresponding to xj, and ρj is the 
simple correlation between y and xj. Pratt 
justified the rule whereby relative importance is 
equated with variance explained, provided that 
explained variance attributed to xj is jj ρβ . This 

definition of variable importance has been 
widely used in the applied literature (Green,  
 

Carroll and De Sarbo 1978), but as documented 
by Pratt (1987), it has also been severely 
criticized. Pratt justified the measure using an 
axiomatic approach based largely on symmetry 
and invariance to linear transformation. Subject 
to his axioms, he showed that his measure is 
unique. An added bonus is that Pratt’s measure 
allows the importance of a subset of variables to 
be defined additively, as the sum of their 
individual importances. Other commonly used 
measures do not allow for an additive definition. 
 
The Geometric Approach 

Thomas et al. (1998) gave a sample 
interpretation of Pratt’s measure based on the 
geometry of least squares. They considered a 
sample of N observations fitted to a model of the 
form (1), so that the observed variables 

p . . . ,y x x ,, 1 comprise vectors in an N-

dimensional space.  Without loss of generality  
 
they assumed that all variables have zero mean, 
i.e., 01 =′==′=′ NpNN 1x1x1y ... , where 1N  is 

an 1×N vector of ones. In this case, 
∧
y , the  

fitted value of y, is the projection of  y onto the 
subspace spanned by the explanatory variables  
 

Table 3 
 

Logistic Regression Results for the Combined RSF Dataset 

                                 b~             s.e.( b~ )              Wald            df       exp( b~ ) 
______________________________________________________________________ 

 
Intercept 0.196   0.236   0.69         1  1.127 
DISP  1.290   0.252  26.30         1    3.633 
SUPP  2.495   0.397  39.53         1           12.120 
INDEP             0.915   0.238  14.78         1             2.497 

_______________________________________________________________________ 
 

Note: Included in this table is the value of )~( jbexp ,  j = 1, 2, 3, where jb
~

denotes the MLEs of the 

logistic regression coefficient for the j’th of the three explanatory variables.  The exponential of the 
j’th regression parameter represents the proportional increase in the odds of a firm being an issuer of 
restricted voting shares corresponding to an increase of one unit in its score on the j’th explanatory 
variable, with all other scores held constant. While it is tempting to use these odds ratios as measures 
of relative importance, it is easily seen that they suffer from precisely the same flaw as do the Wald or 
z-statistics. 
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p, . . . , j 1= x j , , and has the representation 

 

                    ppbb xxy
∧∧∧

++= ...11 ,             (3) 

where the jb
∧

’s are least squares estimates of the 
population regression coefficients  
 bj,  j = 1, …, p.  Figure 1 illustrates the 
geometric interpretation of Pratt’s importance 
measures in a two-variable model subspace. In 
this model subspace, appropriate multiples of 

1x  and 2x   (given by the least squares 

estimates of the regression coefficients, 1

∧
b  and 

2

∧
b , respectively) sum geometrically to 

∧
y , the 

projection of  y from its N-dimensional space 
onto the two-dimensional model subspace. The 
heavy lines represent the vector projection of 

each component  jjb x
∧

 onto 
∧
y . Clearly, the 

orthogonal components sum to zero. Thus it is  

 

natural to use the (signed) lengths of the 

individual projections in the 
∧
y direction (which 

sum to 
∧
y ) as measures of the contribution of 

each jx   to 
∧
y , i.e., as measures of variable 

importance. Thomas et al. (1998) actually 
defined their VI indices, denoted dj, as the ratio 
of the signed length of these projections to the 

length of 
∧
y , and showed that  

 

            2Rd jjj

∧∧
= ρβ , ,,...,1 pj =              (4) 

 
where hats denote sample estimates, and where 
R2 is the usual proportion of sample variance 
explained. It can be seen that the VI indices 
defined in equation (4) are sample estimates of 
Pratt’s (1987) measures, normalized by R2 . 
Defined in this way, they automatically sum to 
one. The dj’s are analogous to the  

 

 

 
Figure 1   Importance Measures as Projections 

 
 

cancel 

11 xb
∧

 

22 xb
∧

 

∧
y  

Projections in 
∧
y  direction 

Projections orthogonal to 
∧
y  

direction 
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discriminant ratio coefficients (DRC’s) 
introduced by Thomas (1992) as variable 
importance measures for descriptive 
discriminant analysis.  
 
Negative Values of Pratt’s VI Indices 

Pratt’s measure can be negative, a 
feature that has been criticized and that would 
appear to detract from its utility as a measure of 
importance. However, according to Pratt’s 
axiomatic derivation, the importance rule is 
valid only when the population quantities jj ρβ  

are all positive.  Thus negativity of any one of 
these quantities does not signify negative 
importance, but instead signifies a regression 
situation which is “too complex for a single 
measure” (Pratt 1987, p. 245). Thomas et al. 
(1998) used an extension of the geometric 
argument to show that negative dj’s of large 
magnitude can arise from multicollinearity 
among the predictor variables. They gave an 
example where a negative VI index of large 
magnitude (close to one) was reduced to a small 
positive value by the application of ridge 
regression (Hoerl & Kennard 1970), suggesting 
that the original “negative importance” was 
false. Not all negative importances will be false, 
however, and the fact must be faced that some 
regression modeling situations are so complex 
that there is no single measure of variable 
importance that satisfies Pratt’s axioms.  For 
multiple linear regression, Thomas, Zhu and 
Decady (2007) have developed simultaneous 
confidence interval procedures that can be used 
to identify such cases. 

Pratt’s axiomatic derivation provides a 
theoretical foundation for his measure in the 
case of multiple regression, but it is not 
necessarily easy to generalize his method to 
other analyses. The benefit of the geometric 
interpretation is that it is sometimes easier to 
apply to other modeling techniques than is the 
axiomatic approach, as exemplified by 
Thomas’s (1992) introduction of DRC’s in 
discriminant analysis. It will be shown in 
Section 5 that both the axiomatic and 
geometrical interpretations of Pratt’s method can 
be extended to the case of logistic regression. 
 

 
R2 Measures for Logistic Regression 
The Model Setup 

The logistic model of interest can be 
expressed as 

                 log bx')]/([ iii =− ππ 1 ,   

                i = 1, …, N,                                      (5) 
 

where )( iii yP x1==π , and where in this 

logistic case,  yi, i = 1, …, N are independent 
binary random variables, xi, i = 1, …, N  are 

)( 1+p -vectors of observed explanatory 
variable scores (with first element equal to one) 
for the i’th individual,  and  b is a  (p+1)-vector 
of regression coefficients (with first element b0 
corresponding to the intercept).  

The reader is warned not to confuse the 
,ix N ,. . . ,i 1= , notation used in equation (5), 

which refers to N sample realizations of a  
(p+1)-vector, with the notation 
,jx p ,. . . ,j 1= , used in the previous section, 

which referred to p realizations of an N-vector. 
The indexing will always be clearly specified to 
avoid confusion. Also, no notational distinction 
is made in the paper between a random variable 
and its realization; the distinction will be clear 
from the context. In equation (5) it will be 
assumed that at least one of the predictors will 
be measured on a continuous scale, so that none 
of the covariate patterns will be repeated. This is 
the sparse case in which the Pearson chi-square 
and the deviance (discussed, for example, by 
McCullagh and Nelder 1989) do not exhibit their 
“usual” asymptotic chi-squared distributions, 
and for which appropriate goodness-of-fit 
measures are still an issue. The aim of this 
section is to identify, for the above setup, 
measures of fit of the R2 type that can be 
partitioned to yield VI indices for logistic 

regression. Some of the relevant 2R  measures 
proposed to date will be briefly reviewed.  

Pseudo- 2R  Measures for Logistic Regression 
In a review of pseudo-R2 measures for 

binary choice models, Windmeijer (1995) 
reviewed several categories of measures of fit, 
the first of which is usually attributed to Efron 
(1978) though it has been considered by a 
number of authors. It has the form 
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where 
_

y  is the sample mean of the binary yi’s 

and the iπ~ ’s in this case denote maximum 

likelihood estimates (MLEs) of the iπ ’s. In fact, 

any consistent estimates of the iπ ’s will suffice.  

Mittlbock and Schemper (1996) favored this 
measure over many of its competitors. However, 
Cameron and Windmeijer (1996) noted that the 
lower bound for Efron’s measure is not in 
general equal to zero, and may in some cases be 
negative.  For this reason, and because it cannot 
readily be partitioned to identify the contribution 
of individual predictor variables, Efron’s 
measure will not be considered further.  
 
The second category consists of measures based 
on the loglikelihood corresponding to model (5), 
namely 

log )( bL  

 −−+=
i

iiii yy )].()()([ ππ 1log1log                                   

        (7) 
 
McFadden’s (1974) measure has the form 
 

              log12 −=MFR /)~( bL 0logL ,          (8) 

 

where )(
~
bL denotes the likelihood evaluated at 

the maximum likelihood estimate 
~
b , and  0L  

denotes the likelihood for the model containing 
only an intercept term. When there are no 

repeated predictor patterns, 2
MFR  lies in the 

interval [0, 1]. Otherwise, its upper limit is less 
than one, in which case the statistic can be 
adjusted to recover the appropriate limits 
(Hosmer & Lemeshow 2000, pp. 164). 
McFadden’s measure possesses several 
attractive features. It is related to the asymptotic 
chi-squared test that a subset of the model 
parameters are zero, and it also has an 
information theoretic interpretation (see 

Windmeijer, 1995). Unfortunately, it cannot be 
partitioned into individual importances, either by 
means of the linear geometric interpretation 
described earlier or by any other means known 
to the authors. A related measure due to Cox and 
Snell (1989) is also based on the likelihood ratio, 
and has the form 
 

                  N
CS LLR /)]~(/[ 2

0
2 1 b−= .         (9) 

 
This measure does not attain an upper 

limit of one when the model fits perfectly, and it 
was suggested by Cragg and Uhler (1970) that it 
should be scaled to give the required upper 
bound. Nagelkerke (1991) advocated the same 
scaling and showed that the scaled measure 
possesses theoretically attractive features.  
However, Mittlbock, and Schemper (1996) 
criticized this scaling as cosmetic, noting that 
there is no theoretical reason why such a scaling 
should be appropriate at intermediate values of 
the statistic. As with the McFadden measure, 

there appears to be no way to partition 2
CSR  or 

its scaled counterpart to account for 
contributions of individual variables.  

A third category of R2 measures is based 
on the interpretation of logistic regression (and 
other binary choice models) as a linear 
regression of predictors on an unobservable 

continuously distributed random variable ∗
iy , 

where the observed binary variable iy  takes the 

value 1 for 1≥∗
iy , and the value 0 for 1<∗

iy .  

The linear model is specified as 
 

 iiiy ε+=∗ bx' ,      . . . Ni  ,1=         (10)    

                         
where the iε  are independently distributed 

logistic variables with mean zero and variance 
π2/3, with ix′  and b defined as in equation (10). 

Had the response variable ),( ′= ∗∗∗
N . . . , yy1y  

been observed, then standard OLS parameter 
and residual estimation could be used resulting 

in a measure 2∗R .  Although ∗y  is not 

observable, 2∗R can be replaced by a measure 
proposed by McKelvey and Zavoina (1975) and 
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Laitila (1993), henceforth referred to as MZL, 
namely 
  

     )/ˆˆˆˆ 322 πNRMZL +′′′= bQXXb(bQXXb '' .                                              

                                                                 (11) 

Here b̂  is any consistent estimator of b, 

X is an )( 1+× pN  matrix having rows '
ix ,  

. . . Ni  ,1= , and Q is the NN × projection 

matrix given by NNNN /'11IQ −= . Laitila 

(1993) gave a more general version of (11) 
applicable also to limited dependent variable 
models, in which the error variance term was 
consistently estimated. The key property of 

2
MZLR (and its more general versions) is that the 

difference between it and 2∗R  vanishes with 
increasing sample size, i.e., it is asymptotically 
zero in probability. It will be shown in the next 
section that Pratt’s approach can be applied to 

partition 2
MZLR  to yield a set of VI indices. It 

will also be shown that even though the original 
2∗R  itself is unobservable, it nevertheless 

provides the basis for deriving an alternative set 
of normalized VI indices that are asymptotically 

close to those derived from 2
MZLR . 

 
An R2 Measure Based on Weighted Least 
Squares 
It was noted by Pregibon (1981) that the 

maximum likelihood estimator 
~
b of  b can be 

represented in terms of the weighted least 
squares regression of a vector of pseudo-values  
z on X, given by 
 

                   VzXVXXb '' 1−= )(
~

,              (12) 
 

where rVbXz 1−+=
~

, )(
~
πyr −= , y is the 

1×N  vector of binary observations, 
~
π  is the 

1×N  vector of estimated probabilities 
corresponding to the maximum likelihood 

estimate 
~
b , and V is the NN ×  diagonal 

weight matrix having elements 




 −

~~

ii ππ 1 , i = 

1, …, N.  Pregibon (1981) exploited equation 

(12) to extend the diagnostic techniques of linear 
regression to logistic regression, and Nordberg 
(1981) and Hosmer, Jovanovic, and Lemeshow 
(1989) used it to apply the techniques of all 
subsets variable selection to logistic regression.  
In this section the representation (12) will be 
used to develop a pseudo-R2 measure for logistic 
regression.  

It will be more convenient to represent 
equation (12) as the OLS regression of 

zVω 21/= on XV 21/ , with fitted values 
~

/ bXVω 21=
∧

 and residuals given by  

      rVbXzVωω 2121 /
~

/ )( −
∧

=−=−          (13) 
 
The residual sum of squares from this pseudo-
regression is 

rVrωωωω 1−
∧∧

=−−= '' )()(ESS  

                    2

1

2

1
χ

ππ

π
=

−

−
=

=

N

i ii

iiy

)(

)(
~~

~

,         (14) 

 
the familiar Pearson “chi-squared” statistic. 
Alternatively, 

               zMVVzMωω 2121 //'' ==ESS   (15) 
 
where M is a NN ×  projection matrix of rank 
N-p-1 given by 
 

         21121 // )( VXVXXXVIM '' −−= . (16) 
 

This projection matrix, derived from the 
weighted least squares representation of the 
maximum likelihood estimate, was used by 
Pregibon (1981) in his development of logistic 
regression diagnostics. The OLS version of the 
maximum likelihood identity also yields a 
regression sum of squares, given by 

 

( ) ∧−∧∧∧
−= ωV1V111Vωωω '' 21121 //

''

RSS  

            
~

V
' bXVQVXb 2121 //

~
'= ,                 (17) 

 

where ( ) 21121 // V1V111VIQ '' −−=V . Note 

that equation (17) comprises a weighted version 

of the numerator of 2
MZLR  given in equation 
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(11). Equations (14) and (17) immediately lead 
to an R2 measure given by 
 

                   )/( 22 χ+= RRWLS SSSSR         (18) 

 

                          )./( 221 χχ +−= RSS      (19) 
 
The geometric interpretation of Pratt’s measures 

will be used in the next section to partition 2
WLSR  

and yield a set of normalized VI indices. 
 
A Numerical Comparison of the Pseudo- 2R  
Measures 

Pseudo- 2R  measures for the synthetic 
and RSF datasets are displayed in Table 4. 
Results for the synthetic data, shown in the 
leftmost column, can be regarded as population 
values essentially free of sampling error. Values 

of Efron’s 2
ER , McFadden’s 2

MFR   and Cox and 

Snell’s 2
CSR  are shown for reference only, as 

they cannot be partitioned and thus do not 
provide the basis for the development of VI 

indices. As is typical of such pseudo- 2R  
measures, they vary considerably in magnitude 
(Mittlbrock & Schemper 1996) for both datasets. 

Of all the measures in Table 4, the 

largest value is recorded by 2
MZLR (McKelvey & 

Zavoina 1975; Laitila 1993), which is not 
surprising because it is designed to measure the 
explained variation in the continuous latent 

variable ∗y , rather than the variation in the 
observed vector of binary variables y. On the 
other hand, the new weighted least squares 

measure 2
WLSR  records the smallest pseudo- 2R  

value of all, for both synthetic and RSF data.  It 
is interesting to note that Mittlbrock and 
Schemper (1996) argued against using the 
weighted least squares representation of the 

MLE to construct a pseudo- 2R  because of the 
potentially distorting effect of the weights. 
Generally speaking, the trends exhibited in 

Table 4  for pseudo- 2R  values  are similar for 
both the RSF dataset and the synthetic dataset, 
which represents population values.  The sample 
values obtained for the RSF dataset can 
therefore be validly used for interpretational 

purposes, even though the sample size is not 
large.  
 
Variable Importance Indices for Logistic 
Regression Measures of Importance Based on 

2
MZLR and 2∗R  

The continuous model (10) satisfies the 
assumptions of Pratt’s axiomatic approach to  
variable importance for linear models, the only 
difference being that the dependent variable ∗y  
is not observable. Thus the VI indices of 
equation (4) can be applied provided only that 

consistent estimates of jβ ,  jρ  and 2R  can be 

obtained. An estimate of 2R   is given by 2
MZLR , 

as described in the previous section, and a 
consistent estimate of jβ  is given by  

                 

    32 /~~/ˆ~ˆ πσβ Nb jj
MZL
j +′= bQXXb ' ,  

                                                      (20) 
 

(see equation 11) where jb
~

 is the (known) MLE 

of the regression coefficient for the j’th predictor 
variable N, . . . ,  ixij 1= , , and where 

jj
'QX]X[ˆ =2

jσ  is its sample variance. 

The correlation jρ  between ∗y  and 

each observed predictor jx , p ,. . . j ,1= can be 

estimated as a polyserial correlation, PS
jρ̂   

(Drasgow 1986), inferred using only the 
observed binary responses N, . . . ,  iyi 1= ,  

and the observed predictors.  These estimates 
together yield the set of  VI indices 
 

2
MZL

PS

j

MZL

j
MZL
j Rd

∧∧
= ρβ ,  p ,. . ,.j 1= . 

                                                        (21) 
 

Note, however, that this application of 
polyserial coefficients invokes an assumption of 

joint multivariate normality of  ∗
iy  and ix  

which is not required in the development of 2∗R  

or 2
MZLR .  Further, since iε  in equation (10) is 

assigned a logistic distribution, ∗
iy   itself will 
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not be multivariate normal.  Calculations based 

on the synthetic dataset yield 74102 .=MZLR , and  

7470.=
∧∧

j

PC

j

MZL

j ρβ , indicating that for 

normal  ix ’s  and logistic iε , estimates of the 

polyserial correlations are robust to this 
violation of joint normality when the predictors 
themselves are normal. (The corresponding 
comparison for the RSF data yields 0.737 versus 
0.758). Despite this robustness, it is nevertheless 
worth seeking normalized VI indices that do not 
rely on polyserial correlation estimates. 

An alternative expression for VI indices 
can be obtained by applying the derivation of 

Thomas, Hughes and Zumbo (1998) with ∗y  
treated as known. This yields 

 

              jQxy ∗∗ ′= [jd 2∗RNb j /]/ˆ = 

                      jQxX'b′ˆ[ 2∗RNbj /]/ˆ        (22) 

 

where b′ˆ  and  jb̂  represent OLS regression 

parameter estimates. Thus knowledge of  ∗y  is 
not needed to define VI indices; consistent 

estimates of the population values of ∗
jd  can be 

obtained by replacing  b̂  by the MLE b~ , and 
2R∗  by  2

MZLR .  As a result of these 

replacements, the sum of the ∗
jd ’s will sum to 

one asymptotically, without the slight 
approximation inherent in the method that relies 
on the polyserial coefficient. Furthermore, 
normalized VI indices that sum identically to 
one can be defined as 

=∗ )( Nd j

j

j

b

b
~~

~~

jj

j

QxXb
QxXb

′′

′′


 

bQXXb
QxXb j

~~

~~

′′

′′
= jb

, 

                                   (23) 
 
where the denominator of equation (23), divided 

by N, is asymptotically equivalent to 2∗R  and  
2
MZLR .  Equation (23) represents the most 

convenient version of a VI index based on the 

linear representation  (10). Values of both MZL
jd  

and  )( Nd j
∗  for the synthetic dataset are 

displayed in Table 5.  
 

Measures of Importance Based on 2
WLSR  

The assumptions underlying Pratt’s 
axiomatic approach do not apply to the WLS 
representation of the MLE given in equation 

(12). However, the measure of fit 2
WLSR  can be 

partitioned by applying the geometric approach 
of Thomas et al. (1998) to the pseudo-regression 
formulation of Section 4, i.e., by an appropriate 

interpretation of equation (4). Let 
~

jβ represent 

the standardized logistic regression coefficient 
corresponding to the jth predictor, j = 1, …, p, 
given by 

 
~

' 1/2 1/2 1/2 ' 1/2 1/2 1/2( ) ( )

j

j j V j Vb x V Q V x z V Q V z

β =
 

                    (24) 

where 
~

jb is the maximum likelihood estimate of 

the jth logistic regression coefficient bj, and let 
~

jρ be the correlation between z and 

, given by  
 

( )
( )

~

1/2' 1/2 1/2

' 1/2 1/2

1/2' 1/2 1/2

j

V

V j

j V j

zV Q V z
zV Q V x

x V Q V x

ρ =

 
 
 
  

 
 

                                                                               (25) 
 
Then the required VI indices for the j’th 
predictor variable (i.e. the j’ th partition of 

2
WLSR ) are obtained from equation (4) as 

                        

                       2
WLSjj

WLS
j Rd

~~
ρβ= .          (26) 
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In practice, with dependent variable zV 2/1  and 

predictor variables XV 2/1 , the quantities 
~

jβ , j 

= 1, …, p, and 2
WLSR  can be obtained from the 

output of standard multiple regression programs 
as the standardized regression coefficient (the 
“beta” weight in SPSS, for example) and the 
standard R2 measure, respectively. Similarly, the 

correlation 
~

jρ corresponds to the standardized  

regression coefficient in the simple linear 
regression of  on . 

 
An algebraically equivalent 

representation of  WLS
jd  can be derived in a 

manner similar to that used to derive equation 
(22), by applying regression identities to the 

WLS representation of the MLE b~  defined by 
equation (12). This leads to the expression  

 

)( Nd WLS
j  

bXVQVXb
xVQVXb

1/2
v

1/2
j

1/2
v

1/2

~~

~~

′′

′′
= jb

,                        

                                                        (27) 
 

which yields a weighted least squares analogue 
of  equation (23).  

 
A Numerical Comparison of the Competing VI 
Indices 

Values of the variable importance 
indices described in the previous section are 
shown in Table 5 for the three corporate 
governance variables.  The third and fourth rows 
of the table simply illustrate the fact that 
equations (26) and (27) are algebraically 

 

Table 4. Pseudo- 2R  Measures for the Synthetic and Restricted Share Firms  Datasets 
 

Pseudo 2R  Measures                        Synthetic Data                            RSF Data 
                                                                                 (N=50,000)        (N = 202) 

________________________________________________________________________ 
2
MZLR  (equation 11)         0.741       0.737 
2
WLSR  (equation 18)                     0.193       0.226 
2
ER  (equation 6)         0.549       0.483 
2
MFR  (equation 8)         0.487       0.507 
2
CSR  (equation 9)         0.491       0.504 

_________________________________________________________________________ 
 

Table 5. Variable Importance  Indices for the Synthetic and RSF Datasets 
 
VI Indices      Synthetic Data                               RSF Data 
               (N=50,000)       (N = 263) 
              DISP     SUPP   INDEP           DISP   SUPP   INDEP 
_____________________________________________________________________________ 

MZL
jd     (equation 21)  .226 .683 .096  .297 .619 .113 

)( Nd j
∗   (equation 23)  .224 .680 .096  .227 .674 .099 

 
WLS
jd    (equation 26)  .224 .682 .094  .374 .499 .127 

)( Nd WLS
j   (equation 27)  .224 .682 .094  .374 .499 .127 

_____________________________________________________________________________ 
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equivalent, with VI indices that sum to one. 
These alternative forms will be referred to in 

what follows as WLS
jd . 

It can be seen from the first row of 

Table 5 that the VI indices MZL
jd  do not sum to 

one exactly, as was explained in the text. For the 
synthetic dataset they sum to 1.008 and for the  
 
RSF dataset they sum to 1.028, both 
representing only minor discrepancies. The 

indices )( Nd j
∗  do sum to one by virtue of their 

construction, and will be used henceforth in 

preference to MZL
jd . Thus the important 

conclusions to be drawn from Table 5 relate to 

the two index sets )( Nd j
∗  and WLS

jd .  

For the former, it can be seen that 
individual indices for the three independent 
variables are very similar for both the synthetic 
(population) dataset and the RSF dataset. This 

suggests that the VI indices )( Nd j
∗  perform 

well for moderate size samples, a conclusion 
that should be explored in greater detail in a 
more extensive simulation study. It can also be 
seen from Table 5 that both  sets of indices, 

)( Nd j
∗  and WLS

jd , exhibit very similar results 

for the large sample synthetic dataset.  However, 

for the moderately sized RSF dataset, the WLS
jd  

indices differ noticeably from these large sample 

values, suggesting that the VI indices WLS
jd  

might be less robust to small and medium 

sample sizes than the indices )( Nd j
∗ . 

It was noted earlier that Mittlbock and 
Schemper (1996) recommended against using 
the weighted least squares representation of the 
logistic regression MLE because of the 
potentially distorting effect of the weights. 
While these weights appear to have little impact 
on either set of VI indices for the large sample 
synthetic dataset, their effect may be more 
severe for smaller sample sizes. For this reason, 
the following analysis of variable importance in 
the RSF dataset will be based entirely on the 

)( Nd j
∗  indices. 

 

An Analysis of Variable Importance for the RSF 
Dataset  
Point Estimates of Importance 

The point estimates of the VI indices 

)( Nd j
∗  suggest that SUPP (suppression of 

shareholders’ interests) is the most important 
governance variable for differentiating between 
restricted share firms and non-restricted shares 
firms, and that INDEP (board independence) is 
the least important, with the effect of DISP 
(dispersion of ownership) being intermediate.  
However, to decide if these differences between 
point estimates translate into real (population) 
differences in variable importance, standard 
errors and confidence intervals for each 
individual index must be estimated. Thomas, 
Zhu, and Decady (2007) provided large sample 
formulas for the standard errors of normalized 
Pratt indices for the linear regression case, but it 
is not practical to extend their analysis to the 
logistic regression case. However, because the 
VI indices proposed in this paper are smooth 
functions of means, variance and covariances, 
standard errors can be obtained using the 
bootstrap resampling methodology, as described 
in the following section. 
 
Standard Errors and Confidence Intervals for the 
VI Indices 

A standard non-parametric bootstrap 
(Efron and Tibshirani 1993) was used to 
estimate the standard errors and corresponding 

confidence intervals for the indices )( Nd j
∗ . 

The resampling procedure consisted of 1000 
independent bootstrap samples of 200 
observations (each taken with replacement from 
the original RSF sample).  From the 1000 
bootstrap samples, 1000 replications of the 
logistic parameter estimates and VI indices were 
then calculated, allowing for the computation of 
bootstrap standard errors, as well as a visual 
depiction of the bootstrap distribution. All 
computations were carried out using the 
bootstrap facilities of the R language (Canty and 
Ripley 2006).  Histograms of the bootstrap 

samples for the VI indices )( Nd j
∗  are shown in 

Figure 2, and corresponding bootstrap standard 
errors are shown in Table 6. 
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Figure 2 

 

Bootstrap Histograms of The VI Indices )( Nd j
∗  
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Table 6 
 

Bootstrap Standard Errors and BCa Confidence Intervals for VI Indices )( Nd j
∗  

 
_____________________________________________________________________ 

 Variables             Point                 Standard      Individual     Simultaneous 
                Estimates       Errors            95% CIs        95% CIs 

____________________________________________________________________ 
 

 DISP       .227                    .077  (.095,  .400)      (.072,  .434) 
 SUPP       .674                    .087  (.490,  .831)      (.440,  .841) 
 INDEP                    .099                    .044  (.032,  .214)            (.018,  .232) 

_____________________________________________________________________ 
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Large sample confidence intervals are 

often computed simply as a point estimate plus 
and minus twice the standard deviation of the 
statistic in question. However, in cases where 
the sampling distribution still retains some non-
normality, such confidence intervals tend to 
provide poor coverage.  Numerous alternatives 
based on the bootstrap have been described in 
the literature (Efron and Tibshirani 1993; 
Davison and Hinkley 1997), and it has been 
shown that the Bias Corrected and Accelerated 
(BCa) interval has superior coverage properties 
(Platt, Hanley and Yang  2000). A major 
advantage of the BCa interval is its 
transformation-respecting property, i.e., the 
method effectively selects the best (most 
normal) scale and then transforms the interval 
back to the original scale of interest (Efron 
1987).  Individual BCa 95% confidence intervals 

(CIs) for the VI indices )( Nd j
∗  are shown in 

Table 6 along with the point estimates and 
standard errors. 

Individual confidence intervals are 
appropriate if the VI index of a specific variable 
is of prior interest. If the interest results from the  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

analysis itself, i.e., if the VI index of a particular 
variable is the largest, which implies a 
comparison with all other variables, then 
simultaneous confidence intervals should be 
used (Thomas et al. 2007). As shown by the 
latter authors, simultaneous confidence intervals 
can be obtained using the Bonferroni adjustment 
which, for the RSF case featuring three 
explanatory variables, implies constructing 
confidence intervals each at a nominal alpha 
level of 100(1 - .05/3)%. These also are shown 
in Table 6. 
 From Table 6 it can be seen that the 

indices )( Nd j
∗  yield simultaneous confidence 

intervals for DISP and SUPP that do not 
overlap, suggesting that SUPP is more important 
than DISP, as indicated by the point estimates. 
Simultaneous confidence intervals for the VI 
indices for DISP and INDEP do overlap, 
however, suggesting that the population 
importances of these two variables may not 
actually be different. The simultaneous 
confidence intervals are illustrated graphically in 
Figure 3. 

 
 

Figure 3 
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Conclusions 
This article has described a search for variable 
importance measures appropriate for logistic 
regression, motivated by earlier work on the 
relationship between corporate governance 
variables and the issuance of restricted shares. 
Two methods have been proposed, both of 
which are based on Pratt’s (1987) axiomatically 
derived partition of R2 for multiple linear 
regression, which can be generalized using the 
geometric interpretation described by Thomas et 
al. (1998). The first method uses a pseudo-R2 
measure for logistic regression proposed by 
McKelvey and Zavoina (1975) and Laitila 
(1993), which represents a logistic regression as 
the binary truncation of an unobservable 
dependent variable that is linearly related to the 
explanatory variables of interest. 

This method yields a set of VI indices 

denoted )( Nd j
∗  in the paper. The second 

method uses a representation of the maximum 
likelihood estimate of the logistic regression 
coefficients as a weighted least squares (WLS) 
regression, a representation exploited earlier by 
Pregibon (1981), Nordberg (1981) and Hosmer, 
Jovanovic and Lemshow (1989). A set of VI 

indices, denoted WLS
jd , are then derived by 

applying a geometric analogue of Pratt’s 
partitioning approach to the WLS version of  R2  
based on this representation. Both sets of indices 
satisfy the property that they sum to one, which 
gives each index a meaningful scale, and they 
also share the property of additivity, namely that 
the importance of a subset of variables is equal 
to the sum of their individual importances, a 
property not shared by competing measures. A 
large synthetic dataset was constructed to mimic 
the actual data and was used to explore the 
small/medium sample properties of the two main 

methods. The indices )( Nd j
∗  exhibited more 

stable small sample behaviour and were 
therefore used in the final analysis of variable 
importance. 
 In the analysis of the motivating case, 

the VI indices )( Nd j
∗  were used to assign 

importances to three corporate governance 
factors that highlight difference in governance 
characteristics between firms with restricted 

share structure and other public firms without 
this structure. These variables were  SUPP 
(suppression of shareholders interests), DISP 
(dispersion of ownership) and INDEP (board 
independence). A non-parametric bootstrap 
method was used on the RSF dataset to make 
statistical inferences on the importance 
measures. 

Standard errors together with individual 
and simultaneous confidence intervals were 
estimated for each importance measure of the 
governance factors in the logistic regression 
model. The bias corrected and accelerated 
interval method (BCa) was employed to ensure 
good coverage performance of the confidence 
interval (Efron 1987; Platt, Henley and Yang 
2000). The inferential analysis revealed that the 
most important contribution to the logistic 
regression, i.e., to the probability that a firm will 
issue restricted voting shares, is made by the 
variable SUPP. Although point estimates of 
importance suggest that variable DISP is more 
important than INDEP, examination of the 
simultaneous confidence intervals reveals that 
the importances of these two variables are not 
significantly different. It can be seen from the 
earlier results shown in Table 3 that the ranking 
suggested by the regression coefficients (which 
have identical scales because of the unit 
variances of the composite variables) and the 
Wald statistics are the same for the RSF 
variables as those suggested by the VI indices. 
This will not be the same in all situations, 
however, and occurs in this case because of the 
relatively small correlations between the 
explanatory corporate governance variables. 
 Though the development of the VI 

indices )( Nd j
∗  described in this paper was 

motivated by an analysis of the RSF dataset, 
these indices and the general methodology can 
be applied to any logistic regression which can 
be modeled in terms of an underlying continuous 
response. Alternatively, if this assumption is 
deemed untenable in some situation, the 

alternative VI indices WLS
jd  based on the WLS 

representation can be used. It is important to 
note, however, that the examination of the 
properties of both sets of indices has been 
limited to a comparison with an empirically 
generated population. Further research involving 
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simulation studies is needed to examine in detail 
the small and medium sample biases and 
confidence interval coverage rates of both sets of 
indices. In the meantime, however, the 
theoretical developments described in this paper 
provide a viable solution to the vexing problem 
of determining the relative importance of 
explanatory variables in a logistic regression 
analysis. 
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