1,755 research outputs found

    The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti

    Get PDF
    Introduced transinfections of the inherited bacteria Wolbachia can inhibit transmission of viruses by Aedes mosquitoes, and in Ae. aegypti are now being deployed for dengue control in a number of countries. Only three Wolbachia strains from the large number that exist in nature have to date been introduced and characterized in this species. Here novel Ae. aegypti transinfections were generated using the wAlbA and wAu strains. In its native Ae. albopictus, wAlbA is maintained at lower density than the co-infecting wAlbB, but following transfer to Ae. aegypti the relative strain density was reversed, illustrating the strain-specific nature of Wolbachia-host co-adaptation in determining density. The wAu strain also reached high densities in Ae. aegypti, and provided highly efficient transmission blocking of dengue and Zika viruses. Both wAu and wAlbA were less susceptible than wMel to density reduction/incomplete maternal transmission resulting from elevated larval rearing temperatures. Although wAu does not induce cytoplasmic incompatibility (CI), it was stably combined with a CI-inducing strain as a superinfection, and this would facilitate its spread into wild populations. Wolbachia wAu provides a very promising new option for arbovirus control, particularly for deployment in hot tropical climates

    Survival efficacy of the PEGylated G-CSFs Maxy-G34 and neulasta in a mouse model of lethal H-ARS, and residual bone marrow damage in treated survivors

    Get PDF
    In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24 h post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg of either PEG-G-CSF affected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9 mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle-treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation

    A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date

    Full text link
    It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s1^{-1} and an ejecta mass of few ×105\times 10^{-5} M_{\odot}. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.Comment: 26 pages, 13 figure

    Lifelong residual bone marrow damage in murine survivors of the hematopoietic acute radiation syndrome (H-ARS): a compilation of studies comprising the Indiana University experience

    Get PDF
    Accurate analyses of the delayed effects of acute radiation exposure (DEARE) in survivors of the hematopoietic acute radiation syndrome (H-ARS) are hampered by low numbers of mice for examination due to high lethality from the acute syndrome, increased morbidity and mortality in survivors, high cost of husbandry for long-term studies, biological variability, and inconsistencies of models from different laboratories complicating meta-analyses. To address this, a compilation of 38 similar H-ARS studies conducted over a seven-year period in the authors’ laboratory, comprising more than 1,500 irradiated young adult C57BL/6 mice and almost 600 day-30 survivors, was assessed for hematopoietic DEARE at various times up to 30 months of age. Significant loss of long-term repopulating potential of phenotypically-defined primitive hematopoietic stem cells (HSC) was documented in H-ARS survivors, as well as significant decreases in all hematopoietic lineages in peripheral blood, prominent myeloid skew, significantly decreased bone marrow cellularity and numbers of lineage-negative Sca-1+ cKit+ CD150+ cells (KSLCD150+; the phenotype known to be enriched for HSC), and increased cycling of KSLCD150+ cells. Studies interrogating the phenotype of bone marrow cells capable of initiation of suspension cultures and engraftment in competitive transplantation assays documented the phenotype of HSC in H-ARS survivors to be the same as that in non-irradiated age-matched controls. This compilation study adds rigor and validity to our initial findings of persistent hematopoietic dysfunction in H-ARS survivors that arises at the level of the HSC and which affects all classes of hematopoietic cells for the life of the survivor

    The H-ARS Dose Response Relationship (DRR): Validation and Variables

    Get PDF
    Manipulations of lethally-irradiated animals, such as for administration of pharmaceuticals, blood sampling, or other laboratory procedures, have the potential to induce stress effects that may negatively affect morbidity and mortality. To investigate this in a murine model of the hematopoietic acute radiation syndrome, 20 individual survival efficacy studies were grouped based on the severity of the administration (Admn) schedules of their medical countermeasure (MCM) into Admn 1 (no injections), Admn 2 (1-3 injections), or Admn 3 (29 injections or 6-9 oral gavages). Radiation doses ranged from LD30/30 to LD95/30. Thirty-day survival of vehicle controls in each group was used to construct radiation dose lethality response relationship (DRR) probit plots, which were compared statistically to the original DRR from which all LDXX/30 for the studies were obtained. The slope of the Admn 3 probit was found to be significantly steeper (5.190) than that of the original DRR (2.842) or Admn 2 (2.009), which were not significantly different. The LD50/30 for Admn 3 (8.43 Gy) was less than that of the original DRR (8.53 Gy, p < 0.050), whereas the LD50/30 of other groups were similar. Kaplan-Meier survival curves showed significantly worse survival of Admn 3 mice compared to the three other groups (p = 0.007). Taken together, these results show that stressful administration schedules of MCM can negatively impact survival and that dosing regimens should be considered when constructing DRR to use in survival studies

    Assessing diverse evidence to improve conservation decision-making

    Get PDF
    Meeting the urgent need to protect and restore ecosystems requires effective decision‐making through wisely considering a range of evidence. However, weighing and assessing evidence to make complex decisions is challenging, particularly when evidence is of diverse types, subjects, and sources, and varies greatly in its quality and relevance. To tackle these challenges, we present the Balance Evidence Assessment Method (BEAM), an intuitive way to weigh and assess the evidence relating to the core assumptions underpinning the planning and implementation of conservation projects, strategies, and actions. Our method directly tackles the question of how to bring together diverse evidence whilst assessing its relevance, reliability, and strength of support for a given assumption, which can be mapped, for example to a Theory of Change. We consider how simple principles and safeguards in applying this method could help to respectfully, and equitably, include more local forms of knowledge when assessing assumptions, such as by ensuring diverse groups of individuals contribute and assess evidence. The method can be flexibly applied within existing decision‐making tools, platforms, and frameworks whenever assumptions (i.e., claims and hypotheses) are made. This method could greatly facilitate and improve the weighing of diverse evidence to make decisions in a range of situations, from local projects to global policy platforms

    Alternate processing of Flt1 transcripts is directed by conserved cis-elements within an intronic region of FLT1 that reciprocally regulates splicing and polyadenylation

    Get PDF
    The vascular endothelial growth factor receptor, Flt1 is a transmembrane receptor co-expressed with an alternate transcript encoding a secreted form, sFlt1, that functions as a competitive inhibitor of Flt1. Despite shared transcription start sites and upstream regulatory elements, sFlt1 is in far greater excess of Flt1 in the human placenta. Phorbol myristic acid and dimethyloxalylglycine differentially stimulate sFlt1 compared to Flt1 expression in vascular endothelial cells and in cytotrophoblasts. An FLT1 minigene construct containing exon 13, 14 and the intervening region, recapitulates mRNA processing when transfected into COS-7, with chimeric intronic sFlt1 transcripts arising by intronic polyadenylation and other Flt1/sFlt1 transcripts by alternate splicing. Inclusion of exon 15 but not 14 had a modest stimulatory effect on the abundance of sFlt1. The intronic region containing the distal poly(A) signal sequences, when transferred to a heterologous minigene construct, inhibited splicing but only when cloned in sense orientation, consistent with the presence of a directional cis-element. Serial deletional and targeted mutational analysis of cis-elements within intron 13 identified intronic poly(A) signal sequences and adjacent cis-elements as the principal determinants of the relative ratio of intronic sFlt1 and spliced Flt1. We conclude that intronic signals reciprocally regulate splicing and polyadenylation and control sFlt1 expression
    corecore