362 research outputs found

    Phytoplankton distribution and nitrogen dynamics in the southwest Indian subtropical gyre and Southern Ocean waters

    Get PDF
    Marion Island Oceanographic Survey IV, April-May 1999Bibliography: leaves 86-116

    Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean

    Get PDF
    In the Ocean, the seasonal cycle is the mode that couples climate forcing to ecosystem response in production, diversity and carbon export. A better characterisation of the ecosystem's seasonal cycle therefore addresses an important gap in our ability to estimate the sensitivity of the biological pump to climate change. In this study, the regional characteristics of the seasonal cycle of phytoplankton biomass in the Southern Ocean are examined in terms of the timing of the bloom initiation, its amplitude, regional scale variability and the importance of the climatological seasonal cycle in explaining the overall variance. The seasonal cycle was consequently defined into four broad zonal regions; the subtropical zone (STZ), the transition zone (TZ), the Antarctic circumpolar zone (ACZ) and the marginal ice zone (MIZ). Defining the Southern Ocean according to the characteristics of its seasonal cycle provides a more dynamic understanding of ocean productivity based on underlying physical drivers rather than climatological biomass. The response of the biology to the underlying physics of the different seasonal zones resulted in an additional classification of four regions based on the extent of inter-annual seasonal phase locking and the magnitude of the integrated seasonal biomass. This regionalisation contributes towards an improved understanding of the regional differences in the sensitivity of the Southern Oceans ecosystem to climate forcing, potentially allowing more robust predictions of the effects of long term climate trends

    Seasonal development of iron limitation in the sub-Antarctic zone

    Get PDF
    The seasonal and sub-seasonal dynamics of iron availability within the sub-Antarctic zone (SAZ;  ∼ 40–45°&thinsp;S) play an important role in the distribution, biomass and productivity of the phytoplankton community. The variability in iron availability is due to an interplay between winter entrainment, diapycnal diffusion, storm-driven entrainment, atmospheric deposition, iron scavenging and iron recycling processes. Biological observations utilizing grow-out iron addition incubation experiments were performed at different stages of the seasonal cycle within the SAZ to determine whether iron availability at the time of sampling was sufficient to meet biological demands at different times of the growing season. Here we demonstrate that at the beginning of the growing season, there is sufficient iron to meet the demands of the phytoplankton community, but that as the growing season develops the mean iron concentrations in the mixed layer decrease and are insufficient to meet biological demand. Phytoplankton increase their photosynthetic efficiency and net growth rates following iron addition from midsummer to late summer, with no differences determined during early summer, suggestive of seasonal iron depletion and an insufficient resupply of iron to meet biological demand. The result of this is residual macronutrients at the end of the growing season and the prevalence of the high-nutrient low-chlorophyll (HNLC) condition. We conclude that despite the prolonged growing season characteristic of the SAZ, which can extend into late summer/early autumn, results nonetheless suggest that iron supply mechanisms are insufficient to maintain potential maximal growth and productivity throughout the season.</p

    Physical and biological variability in the Antarctic Polar Frontal Zone: report on research cruise 103 of the MV SA Agulhas

    Get PDF
    A detailed hydrographic and biological survey was carried out in the region of the South-west Indian Ridge during April 2002. Hydrographic data revealed that the Andrew Bain Fracture Zone, centred at 30oE, 50oS, functions as an important choke point to the flow of the Antarctic Circumpolar Current, resulting in the convergence of the Antarctic Polar Front (APF) and the southern branch of the Sub-Antarctic Front (SSAF). Total chlorophyll-a concentration and zooplankton biomass were highest at stations occupied in the vicinity of two frontal features represented by the APF and SSAF. These data suggest that the region of the South-west Indian Ridge is an area of elevated biological activity and probably acts as an important offshore feeding area for the top predators on the Prince Edward Islands

    Oceanic biogeochemical characteristic maps identified with holistic use of satellite, model and data

    Get PDF
    This is the final published version.Ocean province level plankton community exhibit heterogeneity across Arctic, Nordic, Atlantic Gyre and Southern Ocean provinces. GreenSeas research is an international FP7 consortium that includes Arctic, Atlantic and Southern Ocean based research teams who are analysing the planktonic ecosystem. We are looking at how the planktonic ecosystem responds to environmental and climate change. Using Earth Observation monitoring data we report new results on identifying generic plankton characteristics observable at a province level, and also touch on spatial and temporal trends that are evident using a holistic analysis framework. Using advanced statistical methods this framework compares and combines Earth Observation information together with an in-situ Oceanic plankton Analytical Database and up to 40 year ocean general circulation biogeochemical model (OGCBM) time series of the equivalent plankton and sea-state measures of this system. Specifically, we outline the use of the GreenSeas Analytical Database, which is a harmonised set of Oceanic in-situ plankton and sea-state measures covering different cruises and time periods. The Analytical Database information ranges from plankton community, primary production, nutrient cycling to physical sea state temperature and salinity measures. The combined analysis utilises current, 10 year+ Earth Observations of ocean colour and sea surface temperature metrics and interprets these together with biogeochemical model outputs from PELAGOS, ERSEM & NORWECOM model runs to help identify planktonic based biomes. Generic planktonic characteristic maps that are equivalently observable in both the Earth Observations and numerical models are reported on. Both ocean surface and sub-surface signals are analysed together with relevant Analytical Database biome extracts. We present the current results of this inter-comparison & discuss challenges of identifying the province level plankton dominance with the satellite, model and data. In particular we discuss the strategic importance of systematically analysing the knowledge present in the existing key long term Oceanic observation platforms through such holistic analysis frameworks. These maps help to enhance and improve current biogeochemical models, our understanding of the plankton community structure and predictions used for future assessment of climate change

    The prognosis of allocentric and egocentric neglect : evidence from clinical scans

    Get PDF
    We contrasted the neuroanatomical substrates of sub-acute and chronic visuospatial deficits associated with different aspects of unilateral neglect using computed tomography scans acquired as part of routine clinical diagnosis. Voxel-wise statistical analyses were conducted on a group of 160 stroke patients scanned at a sub-acute stage. Lesion-deficit relationships were assessed across the whole brain, separately for grey and white matter. We assessed lesions that were associated with behavioural performance (i) at a sub-acute stage (within 3 months of the stroke) and (ii) at a chronic stage (after 9 months post stroke). Allocentric and egocentric neglect symptoms at the sub-acute stage were associated with lesions to dissociated regions within the frontal lobe, amongst other regions. However the frontal lesions were not associated with neglect at the chronic stage. On the other hand, lesions in the angular gyrus were associated with persistent allocentric neglect. In contrast, lesions within the superior temporal gyrus extending into the supramarginal gyrus, as well as lesions within the basal ganglia and insula, were associated with persistent egocentric neglect. Damage within the temporo-parietal junction was associated with both types of neglect at the sub-acute stage and 9 months later. Furthermore, white matter disconnections resulting from damage along the superior longitudinal fasciculus were associated with both types of neglect and critically related to both sub-acute and chronic deficits. Finally, there was a significant difference in the lesion volume between patients who recovered from neglect and patients with chronic deficits. The findings presented provide evidence that (i) the lesion location and lesion size can be used to successfully predict the outcome of neglect based on clinical CT scans, (ii) lesion location alone can serve as a critical predictor for persistent neglect symptoms, (iii) wide spread lesions are associated with neglect symptoms at the sub-acute stage but only some of these are critical for predicting whether neglect will become a chronic disorder and (iv) the severity of behavioural symptoms can be a useful predictor of recovery in the absence of neuroimaging findings on clinical scans. We discuss the implications for understanding the symptoms of the neglect syndrome, the recovery of function and the use of clinical scans to predict outcome

    Southern Ocean phytoplankton dynamics and carbon export: insights from a seasonal cycle approach

    Get PDF
    Quantifying the strength and efficiency of the Southern Ocean biological carbon pump (BCP) and its response to predicted changes in the Earth's climate is fundamental to our ability to predict long-term changes in the global carbon cycle and, by extension, the impact of continued anthropogenic perturbation of atmospheric CO2. There is little agreement, however, in climate model projections of the sensitivity of the Southern Ocean BCP to climate change, with a lack of consensus in even the direction of predicted change, highlighting a gap in our understanding of a major planetary carbon flux. In this review, we summarize relevant research that highlights the important role of fine-scale dynamics (both temporal and spatial) that link physical forcing mechanisms to biogeochemical responses that impact the characteristics of the seasonal cycle of phytoplankton and by extension the BCP. This approach highlights the potential for integrating autonomous and remote sensing observations of fine scale dynamics to derive regionally optimized biogeochemical parameterizations for Southern Ocean models. Ongoing development in both the observational and modelling fields will generate new insights into Southern Ocean ecosystem function for improved predictions of the sensitivity of the Southern Ocean BCP to climate change. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'
    • …
    corecore