857 research outputs found

    Anxiety disorders and age-related changes in physiology

    Get PDF
    Background Anxiety disorders are leading contributors to the global disease burden, highly prevalent across the lifespan and associated with substantially increased morbidity and early mortality. Aims The aim of this study was to examine age-related changes across a wide range of physiological measures in middle-aged and older adults with a lifetime history of anxiety disorders compared with healthy controls. Method The UK Biobank study recruited >500 000 adults, aged 37-73, between 2006 and 2010. We used generalised additive models to estimate non-linear associations between age and hand-grip strength, cardiovascular function, body composition, lung function and heel bone mineral density in a case group and in a control group. Results The main data-set included 332 078 adults (mean age 56.37 years; 52.65% women). In both genders, individuals with anxiety disorders had a lower hand-grip strength and lower blood pressure, whereas their pulse rate and body composition measures were higher than in the healthy control group. Case-control group differences were larger when considering individuals with chronic and/or severe anxiety disorders, and differences in body composition were modulated by depression comorbidity status. Differences in age-related physiological changes between females in the anxiety disorder case group and healthy controls were most evident for blood pressure, pulse rate and body composition, whereas this was the case in males for hand-grip strength, blood pressure and body composition. Most differences in physiological measures between the case and control groups decreased with increasing age. Conclusions Findings in individuals with a lifetime history of anxiety disorders differed from a healthy control group across multiple physiological measures, with some evidence of case-control group differences by age. The differences observed varied by chronicity/severity and depression comorbidity

    Magnetic versus crystal field linear dichroism in NiO thin films

    Full text link
    We have detected strong dichroism in the Ni L2,3L_{2,3} x-ray absorption spectra of monolayer NiO films. The dichroic signal appears to be very similar to the magnetic linear dichroism observed for thicker antiferromagnetic NiO films. A detailed experimental and theoretical analysis reveals, however, that the dichroism is caused by crystal field effects in the monolayer films, which is a non trivial effect because the high spin Ni 3d83d^{8} ground state is not split by low symmetry crystal fields. We present a practical experimental method for identifying the independent magnetic and crystal field contributions to the linear dichroic signal in spectra of NiO films with arbitrary thicknesses and lattice strains. Our findings are also directly relevant for high spin 3d53d^{5} and 3d33d^{3} systems such as LaFeO3_{3}, Fe2_{2}O3_{3}, VO, LaCrO3_{3}, Cr2_{2}O3_{3}, and Mn4+^{4+} manganate thin films

    Band-theoretical prediction of magnetic anisotropy in uranium monochalcogenides

    Full text link
    Magnetic anisotropy of uranium monochalcogenides, US, USe and UTe, is studied by means of fully-relativistic spin-polarized band structure calculations within the local spin-density approximation. It is found that the size of the magnetic anisotropy is fairly large (about 10 meV/unit formula), which is comparable with experiment. This strong anisotropy is discussed in view of a pseudo-gap formation, of which crucial ingredients are the exchange splitting of U 5f states and their hybridization with chalcogen p states (f-p hybridization). An anomalous trend in the anisotropy is found in the series (US>>USe<UTe) and interpreted in terms of competition between localization of the U 5f states and the f-p hybridization. It is the spin-orbit interaction on the chalcogen p states that plays an essential role in enlarging the strength of the f-p hybridization in UTe, leading to an anomalous systematic trend in the magnetic anisotropy.Comment: 4 pages, 5 figure

    Comment on ``Spin Polarization and Magnetic Circular Dichroism in Photoemission from the 2p Core Level of Ferromagnetic Ni''

    Full text link
    Although the Ni_4 cluster includes more information regarding the Ni band structure with respect to the Anderson impurity model, it also favors very peculiar ground states which are incompatible with a coherent picture of all dichroism experiments.Comment: 1 page, RevTeX, 1 epsf figur

    Magnetic circular dichroism of x-ray absorption spectroscopy at rare-earth L2,3 edges in RE2Fe14B compounds (RE = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu)

    Full text link
    Magnetic circular dichroism (MCD) in the x-ray absorption spectroscopy (XAS) at the L2,3 edges for almost entire series of rare-earth (RE) elements in RE2Fe14B, is studied experimentally and theoretically. By a quantitative comparison of the complicated MCD spectral shapes, we find that (i) the 4f-5d intra-atomic exchange interaction not only induces the spin and orbital polarization of the 5d states, which is vital for the MCD spectra of the electric dipole transition from the 2p core states to the empty 5d conduction band, but also it accompanies a contraction of the radial part of the 5d wave function depending on its spin and orbital state, which results in the enhancement of the 2p-5d dipole matrix element, (ii) there are cases where the spin polarization of the 5d states due to the hybridization with the spin polarized 3d states of surrounding irons plays important roles, and (iii) the electric quadrupole transition from the 2p core states to the magnetic vale! nce 4f states is appreciable at the pre-edge region of the dipole spectrum. Especially, our results evidence that it is important to include the enhancement effect of the dipole matrix element in the correct interpretation of the MCD spectra at the RE L2,3 edges.Comment: 9 pages, 5 figures, 1 table, REVTe

    Observation of magnetic circular dichroism in Fe L_{2,3} x-ray-fluorescence spectra

    Get PDF
    We report experiments demonstrating circular dichroism in the x-ray-fluorescence spectra of magnetic systems, as predicted by a recent theory. The data, on the L_{2,3} edges of ferromagnetic iron, are compared with fully relativistic local spin density functional calculations, and the relationship between the dichroic spectra and the spin-resolved local density of occupied states is discussed

    Estrogen-Receptor Expression and Function in Thymocytes in Relation to Gender and Age

    Get PDF
    The expression of estrogen receptor (ER) in thymocytes was studied in young, middle-aged, and old (2, 12, and 24 months, respectively) female and male C57BL/6J mice. Western immunoblots prepared from the thymocytes of females of all age groups showed the presence of a 67-kD protein band, which has been associated with the apparent MW of denatured ER. Flow cytometry analysis o,f cells stained with a monoclonal anti-ER antibody (clone 13H2) disclosed ER expression in both females and males of all age groups. In vivo treatment with estradiol (E2) led to an increase in the specific activity of thymic creatine kinase (CK) in the female mice, whereas the male thymocytes responded with an increase in CK activity only on treatment with dihydrotestosterone (DHT). The data show no differences in ER expression between male and females, but the receptor appears not to be functional in males. Interestingly, when estradiol was applied to co-cultures of lymphoid-depleted fetal thymus (FT) explants and bone-marrow cells, or thymocytes, from young and old females, it resulted in increased cellularity of cultures containing cells of the young, and not those of the old. The proportion of CD4/CD8 phenotypes of the developing cells in these cultures was not affected by E2 treatment. These observations provide a new insight into ER expression and function in T-cell development in relation to gender and age

    Large Orbital Magnetic Moment and Coulomb Correlation effects in FeBr2

    Full text link
    We have performed an all-electron fully relativistic density functional calculation to study the magnetic properties of FeBr2. We show for the first time that the correlation effect enhances the contribution from orbital degrees of freedom of dd electrons to the total magnetic moment on Fe2+^{2+} as opposed to common notion of nearly total quenching of the orbital moment on Fe2+^{2+} site. The insulating nature of the system is correctly predicted when the Hubbard parameter U is included. Energy bands around the gap are very narrow in width and originate from the localized Fe-3dd orbitals, which indicates that FeBr2 is a typical example of the Mott insulator.Comment: 4 pages, 3 figures, revtex4, PRB accepte

    Direct observation of electron doping in La0.7Ce0.3MnO3 using x-ray absorption spectroscopy

    Full text link
    We report on a X-ray absorption spectroscopic (XAS) study on a thin film of La0.7Ce0.3MnO3, a manganite which was previously only speculated to be an electron doped system. The measurements clearly show that the cerium is in the Ce(IV) valence state and that the manganese is present in a mixture of Mn2+ and Mn3+ valence states. These data unambiguously demonstrate that La0.7Ce0.3MnO3 is an electron doped colossal magnetoresistive manganite, a finding that may open up new opportunities both for device applications as well as for further basic research towards a better modelling of the colossal magnetoresistance phenomenon in these materials.Comment: 4 pages, 3 figures, revised versio

    Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice

    Get PDF
    BACKGROUND: Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. RESULTS: Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p < 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nrn1) from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal neurodegeneration by immunohistochemistry and qRT-PCR. CONCLUSION: A number of detrimental gene expression changes occur that contribute to trauma-induced neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure
    corecore