6 research outputs found

    Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome.

    Get PDF
    Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities

    Root-exuded benzoxazinoids can alleviate negative plant–soil feedbacks

    Get PDF
    - Plants can suppress the growth of other plants by modifying soil properties. These negative plant–soil feedbacks are often species-specific, suggesting that some plants possess resistance strategies. However, the underlying mechanisms remain largely unknown. - Here, we investigated whether benzoxazinoids, a class of dominant secondary metabolites that are exuded into the soil by maize and other cereals, allow maize plants to cope with plant–soil feedbacks. - We find that three out of five tested crop species reduce maize (Zea mays L.) performance via negative plant–soil feedbacks relative to the mean across species. This effect is partially alleviated by the capacity of maize plants to produce benzoxazinoids. Soil complementation with purified benzoxazinoids restores the protective effect for benzoxazinoid-deficient mutants. Sterilization and reinoculation experiments suggest that benzoxazinoid-mediated protection acts via changes in soil biota. Substantial variation of the protective effect between experiments and soil types illustrates context dependency. - In conclusion, exuded plant secondary metabolites allow plants to cope with plant–soil feedbacks. These findings expand the functional repertoire of plant secondary metabolites and reveal a mechanism by which plants can resist negative effects of soil feedbacks. The uncovered phenomenon may represent a promising avenue to stabilize plant performance in crop rotations

    The lactonase BxdA mediates metabolic adaptation of maize root bacteria to benzoxazinoids

    Get PDF
    Root exudates contain secondary metabolites that affect the plant’s root microbiome. How microbes cope with these bioactive compounds, and how this ability shapes root microbiomes remain largely unknown. We investigated how maize root bacteria metabolise benzoxazinoids, the main specialised metabolites of maize. Diverse and abundant bacteria metabolised the major compound (6-methoxy-benzoxazolin-2-one, MBOA) in the maize rhizosphere to 2-amino-7-methoxyphenoxazin-3-one (AMPO). By contrast, bacteria isolated from Arabidopsis, which does not produce benzoxazinoids, were unable to metabolise MBOA. Among Microbacteria strains, this differential metabolisation allowed to identify a conserved gene cluster containing the lactonase bxdA. BxdA converts MBOA to AMPO in vitro and we show that this capacity provided bacteria a growth benefit under carbon-limiting conditions. Together these results reveal that maize root bacteria - through BxdA - are metabolically adapted to the benzoxazinoids of their host. We propose that metabolic adaptation to plant-specialised compounds shapes root bacterial communities across the plant kingdom
    corecore