1,499 research outputs found

    Information system support in construction industry with semantic web technologies and/or autonomous reasoning agents

    Get PDF
    Information technology support is hard to find for the early design phases of the architectural design process. Many of the existing issues in such design decision support tools appear to be caused by a mismatch between the ways in which designers think and the ways in which information systems aim to give support. We therefore started an investigation of existing theories of design thinking, compared to the way in which design decision support systems provide information to the designer. We identify two main strategies towards information system support in the early design phase: (1) applications for making design try-outs, and (2) applications as autonomous reasoning agents. We outline preview implementations for both approaches and indicate to what extent these strategies can be used to improve information system support for the architectural designer

    Article Retracted

    Get PDF
    This article has been retracted from publication on author's reques

    Noncommutative Inspired Black Holes in Extra Dimensions

    Get PDF
    In a recent string theory motivated paper, Nicolini, Smailagic and Spallucci (NSS) presented an interesting model for a noncommutative inspired, Schwarzschild-like black hole solution in 4-dimensions. The essential effect of having noncommutative co-ordinates in this approach is to smear out matter distributions on a scale associated with the turn-on of noncommutativity which was taken to be near the 4-d Planck mass. In particular, NSS took this smearing to be essentially Gaussian. This energy scale is sufficiently large that in 4-d such effects may remain invisible indefinitely. Extra dimensional models which attempt to address the gauge hierarchy problem, however, allow for the possibility that the effective fundamental scale may not be far from \sim 1 TeV, an energy regime that will soon be probed by experiments at both the LHC and ILC. In this paper we generalize the NSS model to the case where flat, toroidally compactified extra dimensions are accessible at the Terascale and examine the resulting modifications in black hole properties due to the existence of noncommutativity. We show that while many of the noncommutativity-induced black hole features found in 4-d by NSS persist, in some cases there can be significant modifications due the presence of extra dimensions. We also demonstrate that the essential features of this approach are not particularly sensitive to the Gaussian nature of the smearing employed by NSS.Comment: 30 pages, 12 figures; slight text modifications and references adde

    Mildred Dresselhaus and Solid State Pedagogy at MIT

    Get PDF
    Mildred Dresselhaus is known for her influential research on the physics of carbon. Her wide‐ranging influence as a physics teacher, although well‐known to her students, has been less thoroughly examined. Exploring how Dresselhaus grew into her role teaching solid state physics at MIT reveals much about how that subfield evolved

    Unitary Quantum Physics with Time-Space Noncommutativity

    Full text link
    In this work quantum physics in noncommutative spacetime is developed. It is based on the work of Doplicher et al. which allows for time-space noncommutativity. The Moyal plane is treated in detail. In the context of noncommutative quantum mechanics, some important points are explored, such as the formal construction of the theory, symmetries, causality, simultaneity and observables. The dynamics generated by a noncommutative Schrodinger equation is studied. We prove in particular the following: suppose the Hamiltonian of a quantum mechanical particle on spacetime has no explicit time dependence, and the spatial coordinates commute in its noncommutative form (the only noncommutativity being between time and a space coordinate). Then the commutative and noncommutative versions of the Hamiltonian have identical spectra.Comment: 18 pages, published versio

    Editorial: NK Cell Subsets in Health and Disease: New Developments

    Get PDF
    Natural killer (NK) cells were discovered ca 1975, as the first group of lymphoid cells that were neither T cells nor B cells. Since then, the dissection of the biology of NK cells has been growing exponentially with many seminal discoveries from the identification of MHC class I-specific inhibitory receptors to the discovery of receptor\u2013ligand pairs involved in NK cell activation and to the manipulation of NK cells in cancer. In this research topic, we asked a group of thought leaders in NK cell biology to review recent advances in their origins and biology, and their roles in cancer, infection, and inflammation. Together, these 25 articles provide a timely survey of NK cells as critical immunologic components of health and disease. They will hopefully prompt further dialog and developments in basic and translational immunology

    Is Barbero's Hamiltonian formulation a Gauge Theory of Lorentzian Gravity?

    Full text link
    This letter is a critique of Barbero's constrained Hamiltonian formulation of General Relativity on which current work in Loop Quantum Gravity is based. While we do not dispute the correctness of Barbero's formulation of general relativity, we offer some criticisms of an aesthetic nature. We point out that unlike Ashtekar's complex SU(2) connection, Barbero's real SO(3) connection does not admit an interpretation as a space-time gauge field. We show that if one tries to interpret Barbero's real SO(3) connection as a space-time gauge field, the theory is not diffeomorphism invariant. We conclude that Barbero's formulation is not a gauge theory of gravity in the sense that Ashtekar's Hamiltonian formulation is. The advantages of Barbero's real connection formulation have been bought at the price of giving up the description of gravity as a gauge field.Comment: 12 pages, no figures, revised in the light of referee's comments, accepted for publication in Classical and Quantum Gravit

    Global solutions of a free boundary problem for selfgravitating scalar fields

    Full text link
    The weak cosmic censorship hypothesis can be understood as a statement that there exists a global Cauchy evolution of a selfgravitating system outside an event horizon. The resulting Cauchy problem has a free null-like inner boundary. We study a selfgravitating spherically symmetric nonlinear scalar field. We show the global existence of a spacetime with a null inner boundary that initially is located outside the Schwarzschild radius or, more generally, outside an apparent horizon. The global existence of a patch of a spacetime that is exterior to an event horizon is obtained as a limiting case.Comment: 31 pages, revtex, to appear in the Classical and Quantum Gravit

    The Essential Interactions in Oxides and Spectral Weight Transfer in Doped Manganites

    Get PDF
    We calculate the value of the Fr\"ohlich electron-phonon interaction in manganites, cuprates, and some other charge-transfer insulators and show that this interaction is much stronger than any relevant magnetic interaction. A polaron shift due to the Fr\"ohlich interaction, which is about 1 eV, suggests that carriers in those systems are small (bi)polarons at all temperatures and doping levels, in agreement with the oxygen isotope effect and other data. An opposite conclusion, recently suggested in the literature, is shown to be incorrect. The frequency and temperature dependence of the optical conductivity of ferromagnetic manganites is explained within the framework of the bipolaron theory.Comment: 6 pages, REVTeX 3.1 with 3 eps-figures. Journal versio
    corecore