37 research outputs found

    The male sex pheromone darcin stimulates hippocampal neurogenesis and cell proliferation in the subventricular zone in female mice

    Get PDF
    The integration of newly generated neurons persists throughout life in the mammalian olfactory bulb and hippocampus, regions involved in olfactory and spatial learning. Social cues can be potent stimuli for increasing adult neurogenesis; for example, odors from dominant but not subordinate male mice increase neurogenesis in both brain regions of adult females. However, little is known about the role of neurogenesis in social recognition or the assessment of potential mates. Dominant male mice scent-mark territories using urine that contains a number of pheromones including darcin (MUP20), a male-specific major urinary protein that stimulates rapid learned attraction to the spatial location and individual odor signature of the scent owner. Here we investigate whether exposure to darcin stimulates neurogenesis in the female brain. Hippocampal neurons and cellular proliferation in the lateral ventricles that supply neurons to the olfactory bulbs increased in females exposed for 7 days to male urine containing at least 0.5 Ī¼g/Ī¼l darcin. Darcin was effective whether presented alone or in the context of male urine, but other information in male urine appeared to modulate the proliferative response. When exposed to urine from wild male mice, hippocampal proliferation increased only if urine was from the same individual over 7 days, suggesting that consistency of individual scent signatures is important. While 7 days exposure to male scent initiated the first stages of increased neurogenesis, this caused no immediate increase in female attraction to the scent or in the strength or robustness of spatial learning in short-term conditioned place preference tests. The reliable and consistent stimulation of neurogenesis by a pheromone important in rapid social learning suggests that this may provide an excellent model to explore the relationship between the integration of new neurons and plasticity in spatial and olfactory learning in a socially-relevant context

    The impact of postsynaptic density 95 blocking peptide (Tat-NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainate-induced epileptogenesis

    Get PDF
    Antiepileptogenic agents that prevent the development of epilepsy following a brain insult remain the holy grail of epilepsy therapeutics. We have employed a labelā€free proteomic approach that allows quantification of large numbers of brainā€expressed proteins in a single analysis in the mouse (male C57BL/6J) kainate (KA) model of epileptogenesis. In addition, we have incorporated two putative antiepileptogenic drugs, postsynaptic density proteinā€95 blocking peptide (PSD95BP or Tatā€NR2B9c) and a highly selective inducible nitric oxide synthase inhibitor, 1400W, to give an insight into how such agents might ameliorate epileptogenesis. The test drugs were administered after the induction of status epilepticus (SE) and the animals were euthanized at 7 days, their hippocampi removed, and subjected to LCā€MS/MS analysis. A total of 2,579 proteins were identified; their normalized abundance was compared between treatment groups using ANOVA, with correction for multiple testing by false discovery rate. Significantly altered proteins were subjected to gene ontology and KEGG pathway enrichment analyses. KAā€induced SE was most robustly associated with an alteration in the abundance of proteins involved in neuroinflammation, including heat shock protein betaā€1 (HSP27), glial fibrillary acidic protein, and CD44 antigen. Treatment with PSD95BP or 1400W moderated the abundance of several of these proteins plus that of secretogranin and Src substrate cortactin. Pathway analysis identified the glutamatergic synapse as a key target for both drugs. Our observations require validation in a largerā€scale investigation, with candidate proteins explored in more detail. Nevertheless, this study has identified several mechanisms by which epilepsy might develop and several targets for novel drug development

    Molecular isoforms of high-mobility group box 1 are mechanistic biomarkers for epilepsy

    Get PDF
    Approximately 30% of epilepsy patients do not respond to antiepileptic drugs, representing an unmet medical need. There is evidence that neuroinflammation plays a pathogenic role in drug-resistant epilepsy. The high-mobility group box 1 (HMGB1)/TLR4 axis is a key initiator of neuroinflammation following epileptogenic injuries, and its activation contributes to seizure generation in animal models. However, further work is required to understand the role of HMGB1 and its isoforms in epileptogenesis and drug resistance. Using a combination of animal models and sera from clinically well-characterized patients, we have demonstrated that there are dynamic changes in HMGB1 isoforms in the brain and blood of animals undergoing epileptogenesis. The pathologic disulfide HMGB1 isoform progressively increased in blood before epilepsy onset and prospectively identified animals that developed the disease. Consistent with animal data, we observed early expression of disulfide HMGB1 in patients with newly diagnosed epilepsy, and its persistence was associated with subsequent seizures. In contrast with patients with well-controlled epilepsy, patients with chronic, drug-refractory epilepsy persistently expressed the acetylated, disulfide HMGB1 isoforms. Moreover, treatment of animals with antiinflammatory drugs during epileptogenesis prevented both disease progression and blood increase in HMGB1 isoforms. Our data suggest that HMGB1 isoforms are mechanistic biomarkers for epileptogenesis and drug-resistant epilepsy in humans, necessitating evaluation in larger-scale prospective studies

    Safety of Levetiracetam in paediatrics: a systematic review

    Get PDF
    Objective To identify adverse events (AEs) associated with Levetiracetam (LEV) in children. Methods Databases EMBASE (1974-February 2015) and Medline (1946-February 2015) were searched for articles in which paediatric patients (ā‰¤18 years) received LEV treatment for epilepsy. All studies with reports on safety were included. Studies involving adults, mixed age population (i.e. children and adults) in which the paediatric subpopulation was not sufficiently described, were excluded. A meta-analysis of the RCTs was carried out and association between the commonly reported AEs or treatment discontinuation and the type of regimen (polytherapy or monotherapy) was determined using Chi2 analysis. Results Sixty seven articles involving 3,174 paediatric patients were identified. A total of 1,913 AEs were reported across studies. The most common AEs were behavioural problems and somnolence, which accounted for 10.9% and 8.4% of all AEs in prospective studies. 21 prospective studies involving 1120 children stated the number of children experiencing AEs. 47% of these children experienced AEs. Significantly more children experienced AEs with polytherapy (64%) than monotherapy (22%) (p<0.001). Levetiracetam was discontinued in 4.5% of all children on polytherapy and 0.9% on monotherapy (p<0.001), the majority were due to behavioural problems. Conclusion Behavioural problems and somnolence were the most prevalent adverse events to LEV and the most common causes of treatment discontinuation. Children on polytherapy have a greater risk of adverse events than those receiving monotherapy

    Status Epilepticus: Behavioral and Electroencephalography Seizure Correlates in Kainate Experimental Models

    No full text
    Various etiological factors, such as head injury, chemical intoxication, tumors, and gene mutation, can induce epileptogenesis. In animal models, status epilepticus (SE) triggers epileptogenesis. In humans, convulsive SE for &gt;30ā€‰min can be a life-threatening medical emergency. The duration and severity of convulsive SE are highly variable in chemoconvulsant animal models. A continuous video-electroencephalography (EEG) recording, and/or diligent direct observation, facilitates quantification of exact duration of different stages of convulsive seizures (Racine stages 3ā€“5) to determine the severity of SE. A continuous convulsive SE for &gt;30ā€‰min usually causes high mortality in some rodents and results in widespread brain damage in the surviving animals, in spite of treating with antiepileptic drugs (AEDs). AEDs control behavioral seizures but not EEG seizures. The severity of initial SE impacts epileptogenesis and cognitive function; therefore, quantitative assessment of behavioral SE and EEG in animal models will help to understand the impact of SE severity on epileptogenesis. There are several excellent reviews on experimental models of seizure/SE/epilepsy. This review focusses on the comparison of induction and characterization of behavioral SE and EEG correlates in mice and rats induced by kainate. We also discuss the advantages of repeated low dose of kainate (i.p. route), which minimizes variability in the initial SE severity between animals and reduces mortality rate. A refined approach to induce SE with kainate also addresses the two of the 3Rs (i.e., refinement and reduction), the guiding principles for ethical and scientific standpoint of animal research

    The effects of nitric oxide inhibition prior to kainic acid treatment on neuro- and gliogenesis in the rat dentate gyrus in vivo and in vitro

    No full text
    Treatment with the nitric oxide synthase (NOS) inhibitor, L-NAME prior to the induction of seizures with kainic acid (KA) [L-NAME+KA] increases the expression of activity-dependent neuroprotective protein (ADNP) in cells in the subgranular zone (SGZ) of the rat dentate gyrus 3-days after seizure induction (Cosgrave et al., 2009). Using the incorporation of BrdU we found that this protocol [LNAME+KA] stimulates neuro- and gliogenesis. By comparison, L-NAME or KA alone produced smaller effects. Doublecortin+ (BrdU negative) neuroblasts in the SGZ also significantly increased with L-NAME+KA treatment, suggesting that L-NAME+KA cause more cells to differentiate into neurons. L-NAME alone increased BrdU+ astrocytes in the hilus implying that NO inhibits stem cell differentiation into astrocytes and may also influence their migration. Although NOS inhibition increased cell proliferation in vivo and in vitro it disrupted cell clustering as revealed by ADNP immunoreactivity. In vitro KA treatment resulted in eccentric nuclei, reduced neurite extension and branching in neurons and retracted processes of glia cells, these changes were inhibited with prior treatment of L-NAME suggesting that KA-induced NO production affects cell morphology. Consequently, this data suggests an important role for NO in regulating stem cell proliferation and their fate in the SGZ

    Mechanisms of disease-modifying effect of saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor, in the rat kainate model of temporal lobe epilepsy

    No full text
    We have recently demonstrated the role of the Fyn-PKCĪ“ signaling pathway in status epilepticus (SE)-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy (TLE). In this study, we show a significant disease-modifying effect and the mechanisms of a Fyn/Src tyrosine kinase inhibitor, saracatinib (SAR, also known as AZD0530), in the rat kainate (KA) model of TLE. SAR treatment for a week, starting the first dose (25ā€Æmg/kg, oral) 4ā€Æh after the onset of SE, significantly reduced spontaneously recurring seizures and epileptiform spikes during the four months of continuous video-EEG monitoring. Immunohistochemistry of brain sections and Western blot analyses of hippocampal lysates at 8-day (8d) and 4-month post-SE revealed a significant reduction of SE-induced astrogliosis, microgliosis, neurodegeneration, phosphorylated Fyn/Src-419 and PKCĪ“-tyr311, in SAR-treated group when compared with the vehicle control. We also found the suppression of nitroxidative stress markers such as iNOS, 3-NT, 4-HNE, and gp91phox in the hippocampus, and nitrite and ROS levels in the serum of the SAR-treated group at 8d post-SE. The qRT-PCR (hippocampus) and ELISA (serum) revealed a significant reduction of key proinflammatory cytokines TNFĪ± and IL-1Ī² mRNA in the hippocampus and their protein levels in serum, in addition to IL-6 and IL-12, in the SAR-treated group at 8d in contrast to the vehicle-treated group. These findings suggest that SAR targets some of the key biomarkers of epileptogenesis and modulates neuroinflammatory and nitroxidative pathways that mediate the development of epilepsy. Therefore, SAR can be developed as a potential disease-modifying agent to prevent the development and progression of TLE

    Advantages of Repeated Low Dose against Single High Dose of Kainate in C57BL/6J Mouse Model of Status Epilepticus: Behavioral and Electroencephalographic Studies

    Get PDF
    <div><p>A refined kainate (KA) C57BL/6J mouse model of <i>status epilepticus</i> (SE) using a repeated low dose (RLD) of KA (5 mg/kg, intraperitoneal; at 30 min intervals) was compared with the established single high dose (SHD) of KA (20 mg/kg, intraperitoneal) model. In the RLD group, increased duration of convulsive motor seizures (CMS, Racine scale stage ā‰„3) with a significant reduction in mortality from 21% to 6% and decreased variability in seizure severity between animals/batches were observed when compared to the SHD group. There was a significant increase in the percentage of animals that reached stage-5 seizures (65% versus 96%) in the RLD group. Integrated real-time video-EEG analysis of both groups, using NeuroScore software, revealed stage-specific spikes and power spectral density characteristics. When the seizures progressed from non-convulsive seizures (NCS, stage 1ā€“2) to CMS (stage 3ā€“5), the delta power decreased which was followed by an increase in gamma and beta power. A transient increase in alpha and sigma power marked the transition from NCS to CMS with characteristic ā€˜high frequency triggerā€™ spikes on the EEG, which had no behavioral expression. During SE the spike rate was higher in the RLD group than in the SHD group. Overall these results confirm that RLD of KA is a more robust and consistent mouse model of SE than the SHD of KA mouse model.</p></div

    SE response over time to various doses of KA given at 5/kg at 30 min intervals and to a single dose of 20 mg/kg.

    No full text
    <p>A: A total of 82 mice were used for RLD of KA. About 95% of the animals reached stage-5 seizures with ā‰¤35 mg/kg. <b>B</b>: Cumulative Seizure severity score for the 2 h duration of SE between the first stage-5 (RLD) seizure and diazepam administration. Irrespective of the total dose of KA, the vast majority of animals stayed at stage ā‰„3 seizures after the first stage-5 seizure. Each marker represents a mouse that had achieved SE at a given RLD of KA. Cā€“D: Represent SE response to RLD of KA over time for an individual mouse (circled and indicated by C and D in Fig. 3B). There was no correlation between the total dose of KA received and seizure severity or the earliest time-point at which animals reached stage-5 seizures. E: SE response of mouse to a SHD of KA at 20 mg/kg over time. This mouse had a fewer CMS during the 2 h period of SE after the onset of the first stage-5 seizure.</p
    corecore