18 research outputs found

    Microglia maintain structural integrity during fetal brain morphogenesis

    Get PDF
    Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.</p

    Au-delĂ  du cerveau

    No full text
    International audienc

    Microglial ontogeny, diversity and neurodevelopmental functions

    No full text
    International audienc

    Microbiome influences prenatal and adult microglia in a sex-specific manner

    Full text link
    Microglia are embryonically seeded macrophages that contribute to brain development, homeostasis, and pathologies. It is thus essential to decipher how microglial properties are temporally regulated by intrinsic and extrinsic factors, such as sexual identity and the microbiome. Here, we found that microglia undergo differentiation phases, discernable by transcriptomic signatures and chromatin accessibility landscapes, which can diverge in adult males and females. Remarkably, the absence of microbiome in germ-free mice had a time and sexually dimorphic impact both prenatally and postnatally: microglia were more profoundly perturbed in male embryos and female adults. Antibiotic treatment of adult mice triggered sexually biased microglial responses revealing both acute and long-term effects of microbiota depletion. Finally, human fetal microglia exhibited significant overlap with the murine transcriptomic signature. Our study shows that microglia respond to environmental challenges in a sex- and time-dependent manner from prenatal stages, with major implications for our understanding of microglial contributions to health and disease

    Biphasic impact of prenatal inflammation and macrophage depletion on the wiring of neocortical inhibitory circuits

    No full text
    International audienceThe etiology of neurodevelopmental disorders is linked to defects in parvalbumin (PV)-expressing cortical interneurons and to prenatal immune challenges. Mouse models of maternal immune activation (MIA) and microglia deficits increase the postnatal density of PV interneurons, raising the question of their functional integration. Here, we show that MIA and embryonic depletion of macrophages including microglia have a two-step impact on PV interneurons wiring onto their excitatory target neurons in the barrel cortex. In adults, both challenges reduced the inhibitory drive from PV interneurons, as reported in neurodevelopmental disorders. In juveniles, however, we found an increased density of PV neurons, an enhanced strength of unitary connections onto excitatory cells, and an aberrant horizontal inhibition with a reduced lateral propagation of sensory inputs in vivo. Our results provide a comprehensive framework for understanding the impact of prenatal immune challenges onto the developmental trajectory of inhibitory circuits that leads to pathological brain wiring

    The Huntington disease protein accelerates breast tumour development and metastasis through ErbB2/HER2 signalling

    Get PDF
    International audienceIn Huntington disease (HD), polyglutamine expansion in the huntingtin protein causes specific neuronal death. The consequences of the presence of mutant huntingtin in other tissues are less well understood. Here we propose that mutant huntingtin influences breast cancer progression. Indeed, we show that mammary tumours appear earlier in mouse breast cancer models expressing mutant hunting-tin as compared to control mice expressing wild-type huntingtin. Tumours bearing mutant huntingtin have a modified gene expression pattern that reflects enhanced aggressiveness with the overexpression of genes favouring invasion and metastasis. In agreement, mutant huntingtin accelerates epithelial to mesenchymal transition and enhances cell motility and invasion. Also, lung metastasis is higher in HD conditions than in control mice. Finally, we report that in HD, the dynamin dependent endocytosis of the ErbB2/HER2 receptor tyrosine kinase is reduced. This leads to its accumulation and to subsequent increases in cell motility and proliferation. Our study may thus have important implications for both cancer and HD

    Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development

    Full text link
    Central nervous system (CNS) macrophages comprise microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus, and the perivascular spaces. Most CNS macrophages emerge during development, with the exception of choroid plexus and dural macrophages, which are replaced by monocytes in adulthood. Whether microglia and BAMs share a developmental program or arise from separate lineages remains unknown. Here, we identified two phenotypically, transcriptionally, and locally distinct brain macrophages throughout development, giving rise to either microglia or BAMs. Two macrophage populations were already present in the yolk sac suggesting an early segregation. Fate-mapping models revealed that BAMs mostly derived from early erythro-myeloid progenitors in the yolk sac. The development of microglia was dependent on TGF-ÎČ, whereas the genesis of BAMs occurred independently of this cytokine. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene signature, and requirement for TGF-ÎČ
    corecore