286 research outputs found

    Bioremediation of Mercury (II) Contaminated Seawater Using the Diatom Skeletonema costatum

    Get PDF
    The mercury contaminated seawater can pollute fish pond. Bioremediation is an effective process for the removal and recovery of mercury (II) from seawater using organism as an agent of biological degradation. The aim of this study was to know the optimum contact time and concentrations of the Skeletonema costatum cell inoculation on the bioremediation in mercury (II) contaminated seawater. This study has used the concentrations of the cell inoculation (5000; 10000; and 15000 cells/mL), the mercury (II) (0; 0.5; 1; and 2 mg/L), the contact time (24, 48, 72, 96, and 120 hours), and its replicated five times. The maximum bioremediation capacity of mercury (II) was 2 mg/L at 15 000 cells/mL and contact time 96 hours, with bioremediation efficiency 86.83%. Diatom Skeletonema costatum was efficient at removing 2 mg/L mercury (II) 79.5% for 5 000 cells/L at 72 hours, 83.3 % for 10 000 cells/L at 72 hours and 85% for 15 000 cells/L at 72 hours. The optimum contact time and concentrations of the Skeletonema costatum cell inoculation on the bioremediation in mercury (II) contaminated seawater for 2 mg/L, i.e. 5 000 cells/L for 72 hours (79.5%) Keywords: bioremediation; mercury (II); seawater; Skeletonema costatum

    A systematic review of current knowledge of HIV epidemiology and of sexual behaviour in Nepal

    Get PDF
    OBJECTIVE: To systematically review information on HIV epidemiology and on sexual behaviour in Nepal with a view to identifying gaps in current knowledge. METHODS: Systematic review covering electronic databases, web-based information, personal contact with experts and hand searching of key journals. RESULTS: HIV-1 seroprevalence has been rising rapidly in association with high-risk behaviours, with current levels of 40% amongst the nation's injecting drug users and approaching 20% amongst Kathmandu's female commercial sex workers (FCSWs). HIV seroprevalence remains low in the general population (0.29% of 15–49 year olds). There are significant methodological limitations in many of the seroprevalence studies identified, and these estimates need to be treated with caution. There are extensive migration patterns both within the country and internationally which provide the potential for considerable sexual networking. However, studies of sexual behaviour have focused on FCSWs and the extent of sexual networks within the general population is largely unknown. CONCLUSIONS: Whilst some of the ingredients are present for an explosive HIV epidemic in Nepal, crucial knowledge on sexual behaviour in the general population is missing. Research on sexual networking is urgently required to guide HIV control in Nepal. There is also a need for further good-quality epidemiological studies of HIV seroprevalence

    Remediation of Pb(II) and Cd(II) in Sea Water by Skeletonema costatum

    Get PDF
    The heavy metals that polluted sea water can end up polluting fish pond too. Hence, it is necessary to remove the heavy metals before sea water enters the fish pond. The aim of this study was to know the growth, remediation ability, and the highest of removal efficiency of marine diatom Skeletonema costatum in the lead (Pb(II)) and cadmium (Cd(II)) solution. This study used 3 x 4 factorial design, i.e. concentrations of the cell inoculation (5000 cells mL-1; 10000 cells mL-1; and 15000 cells mL-1) and concentrations of Pb(II) and Cd(II) (0; 0.5; 1; and 2 ppm), replicated five times. During five day exposure time, the cell density was observed daily using a microscope (400X), while filtrate of media was analyzed using AAS. The result showed that S. costatum could grow in Pb(II) and Cd(II) at 2 ppm, and could remediate Pb(II) and Cd(II) at 2 ppm. The highest removal efficiency of marine diatom S. costatum in Pb(II) solution was 80.5% (5000 cells mL-1 at 2 ppm on the first day), and in Cd(II) solution was 80% (15000 cells mL-1 at 0.5 ppm on the fifth day)

    Stem cell delivery to kidney via minimally invasive ultrasound-guided renal artery injection in mice

    Get PDF
    Cell-based therapies are promising treatments for various kidney diseases. However, the major hurdle in initiating therapeutic responses is the inefficiency of injection routes to deliver cells to the kidney parenchyma. Systemic injection, such as intravenous injection only delivers a small proportion of cells to the kidney. Whereas direct delivery, such as renal artery injection requires surgical procedures. A minimally invasive renal artery injection was therefore developed to enhance cell delivery to kidney. In this study, luciferase expressing human adipocyte derived stem cells (ADSC) were labelled with gold nanorods (GNR) and injected into the renal artery using ultrasound guidance. The ADSCs were tracked using bioluminescence and photoacoustic imaging serially over 7 days. Imaging confirmed that the majority of signal was within the kidney, indicative of successful injection and that the cells remained viable for 3 days. Histology showed co-localization of GNRs with ADSC staining throughout the kidney with no indication of injury caused by injection. These findings demonstrate that ultrasound-guided renal artery injection is feasible in mice and can successfully deliver a large proportion of cells which are retained within the kidney for 3 days. Therefore, the techniques developed here will be useful for optimising cell therapy in kidney diseases

    Australian Group on Antimicrobial Resistance Australian Staphylococcus aureus Sepsis Outcome Programme annual report, 2014

    Get PDF
    From 1 January to 31 December 2014, 27 institutions around Australia participated in the Australian Staphylococcal Sepsis Outcome Programme (ASSOP). The aim of ASSOP 2014 was to determine the proportion of Staphylococcus aureus bacteraemia (SAB) isolates in Australia that are antimicrobial resistant, with particular emphasis on susceptibility to methicillin and to characterise the molecular epidemiology of the isolates. Overall, 18.8% of the 2,206 SAB episodes were methicillin resistant, which was significantly higher than that reported in most European countries. The 30-day all-cause mortality associated with methicillin-resistant SAB was 23.4%, which was significantly higher than the 14.4% mortality associated with methicillin-sensitive SAB (P <0.0001). With the exception of the beta-lactams and erythromycin, antimicrobial resistance in methicillin-sensitive S. aureus remains rare. However in addition to the beta-lactams, approximately 50‰ of methicillin-resistant S. aureus (MRSA) were resistant to erythromycin and ciprofloxacin and approximately 15% were resistant to co-trimoxazole, tetracycline and gentamicin. When applying the European Committee on Antimicrobial Susceptibility Testing breakpoints, teicoplanin resistance was detected in 2 S. aureus isolates. Resistance was not detected for vancomycin or linezolid. Resistance to non-beta-lactam antimicrobials was largely attributable to 2 healthcare-associated MRSA clones; ST22-IV [2B] (EMRSA-15) and ST239-III [3A] (Aus-2/3 EMRSA). ST22-IV [2B] (EMRSA-15) has become the predominant healthcare associated clone in Australia. Sixty per cent of methicillin-resistant SAB were due to community-associated (CA) clones. Although polyclonal, almost 44% of community-associated clones were characterised as ST93-IV [2B] (Queensland CA-MRSA) and ST1-IV [2B] (WA1). CA-MRSA, in particular the ST45-V [5C2&5] (WA84) clone, has acquired multiple antimicrobial resistance determinants including ciprofloxacin, erythromycin, clindamycin, gentamicin and tetracycline. As CA-MRSA is well established in the Australian community it is important that antimicrobial resistance patterns in community and healthcare-associated SAB is monitored as this information will guide therapeutic practices in treating S. aureus sepsis

    Myocardial Viability Imaging using Manganese-Enhanced MRI in the First Hours after Myocardial Infarction

    Get PDF
    Early measurements of tissue viability after myocardial infarction (MI) are essential for accurate diagnosis and treatment planning but are challenging to obtain. Here, manganese, a calcium analogue and clinically approved magnetic resonance imaging (MRI) contrast agent, is used as an imaging biomarker of myocardial viability in the first hours after experimental MI. Safe Mn dosing is confirmed by measuring in vitro beating rates, calcium transients, and action potentials in cardiomyocytes, and in vivo heart rates and cardiac contractility in mice. Quantitative T1 mapping-manganese-enhanced MRI (MEMRI) reveals elevated and increasing Mn uptake in viable myocardium remote from the infarct, suggesting MEMRI offers a quantitative biomarker of cardiac inotropy. MEMRI evaluation of infarct size at 1 h, 1 and 14 days after MI quantifies myocardial viability earlier than the current gold-standard technique, late-gadolinium-enhanced MRI. These data, coupled with the re-emergence of clinical Mn -based contrast agents open the possibility of using MEMRI for direct evaluation of myocardial viability early after ischemic onset in patients

    Potential of Magnetic Hyperthermia to Stimulate Localized Immune Activation

    Get PDF
    Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response
    • …
    corecore