486 research outputs found

    Discovery of a New Quadruple Lens HST 1411+5211

    Get PDF
    Gravitational lensing is an important tool for probing the mass distribution of galaxies. In this letter we report the discovery of a new quadruple lens HST 1411+5211 found in archived WFPC2 images of the galaxy cluster CL140933+5226. If the galaxy is a cluster member then its redshift is z=0.46z=0.46. The images of the source appear unresolved in the WFC implying that the source is a quasar. We have modeled the lens as both a single galaxy and a galaxy plus a cluster. The latter model yields excellent fits to the image positions along with reasonable parameters for the galaxy and cluster making HST 1411+5211 a likely gravitational lens. Determination of the source redshift and confirmation of the lens redshift would allow us to put strong constraints on the mass distribution of the lensing galaxy.Comment: 11 pages including 1 postscript figure, aastex. Accepted to the ApJL. Also available from: http://www.astro.lsa.umich.edu:80/users/philf/www/papers/list.htm

    Microscopic theory for quantum mirages in quantum corrals

    Get PDF
    Scanning tunneling microscopy permits to image the Kondo resonance of a single magnetic atom adsorbed on a metallic surface. When the magnetic impurity is placed at the focus of an elliptical quantum corral, a Kondo resonance has been recently observed both on top of the impurity and on top of the focus where no magnetic impurity is present. This projection of the Kondo resonance to a remote point on the surface is referred to as quantum mirage. We present a quantum mechanical theory for the quantum mirage inside an ideal quantum corral and predict that the mirage will occur in corrals with shapes other than elliptical

    Chandra study of an overdensity of X-ray sources around two distant (z~0.5) clusters

    Get PDF
    We present results from a Chandra X-ray Observatory study of the field X-ray source populations in 4 different observations: two high-redshift (z~0.5) clusters of galaxies 3C295 and RXJ003033.2+261819; and two non-cluster fields with similar exposure time. Surprisingly, the 0.5-2 keV source surface densities (~900-1200 sources deg**-2 at a flux limit of 1.5x10**-15 erg cm**-2s**-1) measured in an ~8'x8' area surrounding each cluster exceed by a factor of ~2 the value expected on the basis of the ROSAT and Chandra logN-logS, with a significance of ~2 sigma each, or ~3.5 sigma when the 2 fields are combined (i.e. a probability to be a statistical fluctuation of <1% and <0.04%, respectively). The same analysis performed on the non-cluster fields and on the outer chips of the cluster fields does NOT show evidence of such an excess. In both cluster fields, the summed 0.5-10 keV spectrum of the detected objects is well fitted by a power-law with Gamma~1.7 similar to AGNs and shows no sign of intrinsic absorption. The few (~10 out of 35) optical identifications available to date confirm that most of them are, as expected, AGNs but the number of redshifts available is too small to allow conclusions on their nature. We discuss possible interpretations of the overdensity in terms of: a statistical variation of Cosmic Background sources; a concentration of AGNs and/or powerful starburst galaxies associated with the clusters; and g ravitational lensing of background QSO's by the galaxy clusters. All explanations are however difficult to reconcile with the large number of excess sources detected. Deeper X-ray observations and more redshifts measurements are clearly required to settle the issue.Comment: 22 LateX pages (including Tables and Figures), uses psfig.sty and emulateapj.sty. Accepted for publication in Astrophysical Journa

    3C 295, a cluster and its cooling flow at z=0.46

    Get PDF
    We present ROSAT HRI data of the distant and X-ray luminous (L_x(bol)=2.6^ {+0.4}_{-0.2} 10^{45}erg/sec) cluster of galaxies 3C 295. We fit both a one-dimensional and a two-dimensional isothermal beta-model to the data, the latter one taking into account the effects of the point spread function (PSF). For the error analysis of the parameters of the two-dimensional model we introduce a Monte-Carlo technique. Applying a substructure analysis, by subtracting a cluster model from the data, we find no evidence for a merger, but we see a decrement in emission South-East of the center of the cluster, which might be due to absorption. We confirm previous results by Henry & Henriksen(1986) that 3C 295 hosts a cooling flow. The equations for the simple and idealized cooling flow analysis presented here are solely based on the isothermal beta-model, which fits the data very well, including the center of the cluster. We determine a cooling flow radius of 60-120kpc and mass accretion rates of dot{M}=400-900 Msun/y, depending on the applied model and temperature profile. We also investigate the effects of the ROSAT PSF on our estimate of dot{M}, which tends to lead to a small overestimate of this quantity if not taken into account. This increase of dot{M} (10-25%) can be explained by a shallower gravitational potential inferred by the broader overall profile caused by the PSF, which diminishes the efficiency of mass accretion. We also determine the total mass of the cluster using the hydrostatic approach. At a radius of 2.1 Mpc, we estimate the total mass of the cluster (M{tot}) to be (9.2 +/- 2.7) 10^{14}Msun. For the gas to total mass ratio we get M{gas}/M{tot} =0.17-0.31, in very good agreement with the results for other clusters of galaxies, giving strong evidence for a low density universe.Comment: 26 pages, 7 figures, accepted for publication in Ap

    Kondo screening cloud effects in mesoscopic devices

    Full text link
    We study how finite size effects may appear when a quantum dot in the Kondo Coulomb blockade regime is embedded into a mesoscopic device with finite wires. These finite size effects appear when the size of the mesoscopic device containing the quantum dot is of the order of the size of Kondo cloud and affect all thermodynamic and transport properties of the Kondo quantum dot. We also generalize our results to the experimentally relevant case where the wires contain several transverse modes/channels. Our results are based on perturbation theory, Fermi liquid theory and slave boson mean field theory.Comment: 19 pages, 9 figure

    Spectroscopic analysis of finite size effects around a Kondo quantum dot

    Full text link
    We consider a simple setup in which a small quantum dot is strongly connected to a finite size box. This box can be either a metallic box or a finite size quantum wire.The formation of the Kondo screening cloud in the box strongly depends on the ratio between the Kondo temperature and the box level spacing. By weakly connecting two metallic reservoirs to the quantum dot, a detailed spectroscopic analysis can be performed. Since the transport channels and the screening channels are almost decoupled, such a setup allows an easier access to the measure of finite-size effects associated with the finite extension of the Kondo cloud.Comment: contribution to Les Houches proceeding, ``Quantum magnetism'' 200

    Discovering study-specific gene regulatory networks

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Microarrays are commonly used in biology because of their ability to simultaneously measure thousands of genes under different conditions. Due to their structure, typically containing a high amount of variables but far fewer samples, scalable network analysis techniques are often employed. In particular, consensus approaches have been recently used that combine multiple microarray studies in order to find networks that are more robust. The purpose of this paper, however, is to combine multiple microarray studies to automatically identify subnetworks that are distinctive to specific experimental conditions rather than common to them all. To better understand key regulatory mechanisms and how they change under different conditions, we derive unique networks from multiple independent networks built using glasso which goes beyond standard correlations. This involves calculating cluster prediction accuracies to detect the most predictive genes for a specific set of conditions. We differentiate between accuracies calculated using cross-validation within a selected cluster of studies (the intra prediction accuracy) and those calculated on a set of independent studies belonging to different study clusters (inter prediction accuracy). Finally, we compare our method's results to related state-of-the art techniques. We explore how the proposed pipeline performs on both synthetic data and real data (wheat and Fusarium). Our results show that subnetworks can be identified reliably that are specific to subsets of studies and that these networks reflect key mechanisms that are fundamental to the experimental conditions in each of those subsets

    Kondo effect in coupled quantum dots: a Non-crossing approximation study

    Full text link
    The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in slave-boson language, is solved by means of a generalization of the non-crossing approximation (NCA) to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predictions that can be observed experimentally in linear and nonlinear transport measurements through coupled quantum dots. Importantly, it is demonstrated that measurements of the differential conductance G=dI/dV{\cal G}=dI/dV, for the appropriate values of voltages and inter-dot tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected in the linear transport through the system: the curve linear conductance vs temperature is non-monotonic, with a maximum at a temperature TT^* characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
    corecore