32 research outputs found

    Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of tissues, including epithelial cells, on binding to the receptor tyrosine kinase c-Met. Abnormal c-Met signalling contributes to tumour genesis, in particular to the development of invasive and metastatic phenotypes. The human microbial pathogen <it>Helicobacter pylori </it>can induce chronic gastritis, peptic ulceration and more rarely, gastric adenocarcinoma. The <it>H. pylori </it>effector protein cytotoxin associated gene A (CagA), which is translocated via a type IV secretion system (T4SS) into epithelial cells, intracellularly modulates the c-Met receptor and promotes cellular processes leading to cell scattering, which could contribute to the invasiveness of tumour cells. Using a logical modelling framework, the presented work aims at analysing the c-Met signal transduction network and how it is interfered by <it>H. pylori </it>infection, which might be of importance for tumour development.</p> <p>Results</p> <p>A logical model of HGF and <it>H. pylori </it>induced c-Met signal transduction is presented in this work. The formalism of logical interaction hypergraphs (LIH) was used to construct the network model. The molecular interactions included in the model were all assembled manually based on a careful meta-analysis of published experimental results. Our model reveals the differences and commonalities of the response of the network upon HGF and <it>H. pylori </it>induced c-Met signalling. As another important result, using the formalism of minimal intervention sets, phospholipase Cγ1 (PLCγ1) was identified as knockout target for repressing the activation of the extracellular signal regulated kinase 1/2 (ERK1/2), a signalling molecule directly linked to cell scattering in <it>H. pylori </it>infected cells. The model predicted only an effect on ERK1/2 for the <it>H. pylori </it>stimulus, but not for HGF treatment. This result could be confirmed experimentally in MDCK cells using a specific pharmacological inhibitor against PLCγ1. The <it>in silico </it>predictions for the knockout of two other network components were also verified experimentally.</p> <p>Conclusion</p> <p>This work represents one of the first approaches in the direction of host-pathogen systems biology aiming at deciphering signalling changes brought about by pathogenic bacteria. The suitability of our network model is demonstrated by an <it>in silico </it>prediction of a relevant target against pathogen infection.</p

    Surface antibody changes protein corona both in human and mouse serum but not final opsonization and elimination of targeted polymeric nanoparticles

    Get PDF
    Background: Nanoparticles represent one of the most important innovations in the medical field. Among nanocarriers, polymeric nanoparticles (PNPs) attracted much attention due to their biodegradability, biocompatibility, and capacity to increase efficacy and safety of encapsulated drugs. Another important improvement in the use of nanoparticles as delivery systems is the conjugation of a targeting agent that enables the nanoparticles to accumulate in a specific tissue. Despite these advantages, the clinical translation of therapeutic approaches based on nanoparticles is prevented by their interactions with blood proteins. In fact, the so-formed protein corona (PC) drastically alters the biological identity of the particles. Adsorbed activated proteins of the complement cascade play a pivotal role in the clearance of nanoparticles, making them more easily recognized by macrophages, leading to their rapid elimination from the bloodstream and limiting their efficacy. Since the mouse is the most used preclinical model for human disease, this work compared human and mouse PC formed on untargeted PNPs (uPNPs) and targeted PNPs (tPNPs), paying particular attention to complement activation. Results: Mouse and human serum proteins adsorbed differently to PNPs. The differences in the binding of mouse complement proteins are minimal, whereas human complement components strongly distinguish the two particles. This is probably due to the human origin of the Fc portion of the antibody used as targeting agent on tPNPs. tPNPs and uPNPs mainly activate complement via the classical and alternative pathways, respectively, but this pattern did not affect their binding and internalization in macrophages and only a limited consumption of the activity of the human complement system was documented. Conclusions: The results clearly indicate the presence of complement proteins on PNPs surface but partially derived from an unspecific deposition rather than an effective complement activation. The presence of a targeting antibody favors the activation of the classical pathway, but its absence allows an increased activation of the alternative pathway. This results in similar opsonization of both PNPs and similar phagocytosis by macrophages, without an impairment of the activity of circulating complement system and, consequently, not enhancing the susceptibility to infection. Graphical abstract: [Figure not available: see fulltext.

    Inhibitors of Dipeptidyl Peptidase IV and Aminopeptidase N Target Major Pathogenetic Steps in Acne Initiation

    Get PDF
    Acne is a chronic disease hallmarked by sebaceous hyperplasia, follicular hyperkeratosis, and inflammation. Parallel targeting of these factors is required to treat acne effectively. Inhibitors of dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN) show strong anti-inflammatory effects on immune cells and therapeutic efficacy in autoimmune disorders. Our investigation focused on the expression and functional relevance of these ectopeptidases in three cell types which exhibit an altered phenotype in early acne lesions. We showed for the first time expression of DP IV and APN on human sebocytes. In the SZ95 sebocyte cell line, the DP IV inhibitors Lys[Z(NO2)]-thiazolidide and Lys[Z(NO2)]-pyrrolidide and the APN inhibitors actinonin and bestatin suppressed proliferation, enhanced terminal differentiation, and slightly decreased total neutral lipid production. The anti-inflammatory and differentiation-restoring cytokine IL-1 receptor antagonist was significantly upregulated in SZ95 sebocytes and the HaCaT keratinocyte cell line in the presence of inhibitors. Furthermore, the inhibitors suppressed proliferation and IL-2 production of Propionibacterium acnes-stimulated T cells ex vivo and enhanced the expression of the immunosuppressive cytokine transforming growth factor-β1. Our data provide first evidence for a functional role of DP IV and APN in the sebaceous gland apparatus and for their inhibitors, used alone or in combination, as completely new substances possibly affecting acne pathogenesis in a therapeutic manner

    Tamo gdje završava drama mentaliteta započinje drama političkog trenutka. Ivan Vidić, Octopussy, HNK, Zagreb & Veliki bijeli zec, ZeKaeM

    Get PDF
    <p><b>Copyright information:</b></p><p>Taken from "Host-pathogen systems biology: logical modelling of hepatocyte growth factor and induced c-Met signal transduction"</p><p>http://www.biomedcentral.com/1752-0509/2/4</p><p>BMC Systems Biology 2008;2():4-4.</p><p>Published online 14 Jan 2008</p><p>PMCID:PMC2254585.</p><p></p

    Synapsin Determines Memory Strength after Punishment- and Relief-Learning

    No full text
    Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: “negative” memories for stimuli preceding them and “positive” memories for stimuli experienced at the moment of “relief.” Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training (“forward conditioning” of the odor), whereas after shock-odor training (“backward conditioning” of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences

    Cellulases Production by a Trichoderma sp. Using Food Manufacturing Wastes

    No full text
    The cost of cellulase enzymes is a main contributor to the operational cost of a biorefinery producing ethanol from lignocellulosic material. Therefore, onsite production of enzymes using low-value substrates might be an option to make a bio-based facility more economical, while improving environmental sustainability. Food manufacturing wastes (FMWs), such as olive mill solids, tomato pomace, and grape pomace, are some of the main wastes produced by the food industry in Chile. FMWs are mostly composed of lignocellulosic material, which is primarily made of cellulose. A fungal strain obtained from olive stones was identified as a Trichoderma sp. and characterized by molecular and morphological techniques. This strain was able to grow on three FMWs in both liquid and solid cultures. In liquid cultures, cellulase and &beta;-glucosidase activities from the culture supernatants were quantified. Identification of extracellular proteins using mass spectrometry revealed the presence of endoglucanases, exoglucanases, and &beta;-glucosidases. Cellulase production from agroindustrial residues could be an excellent opportunity to utilize FMWs as well as decrease enzyme production costs in biorefinery processes

    Role of Calprotectin as a Modulator of the IL27-Mediated Proinflammatory Effect on Endothelial Cells

    Get PDF
    An underlying endothelial dysfunction plays a fundamental role in the pathogenesis of cardiovascular events and is the central feature of atherosclerosis. The protein-based communication between leukocytes and inflamed endothelial cells leading to diapedesis has been largely investigated and several key players such as IL6, TNFα, or the damage associated molecular pattern molecule (DAMP) calprotectin are now well identified. However, regarding cytokine IL27, the controversial current knowledge about its inflammatory role and the involved regulatory elements requires clarification. Therefore, we examined the inflammatory impact of IL27 on primary endothelial cells and the potentially modulatory effect of calprotectin on both transcriptome and proteome levels. A qPCR-based screening demonstrated high IL27-mediated gene expression of IL7, IL15, CXCL10, and CXCL11. Calprotectin time-dependent downregulatory effects were observed on IL27-induced IL15 and CXCL10 gene expression. A mass spectrometry-based approach of IL27 ± calprotectin cell stimulation enlightened a calprotectin modulatory role in the expression of 28 proteins, mostly involved in the mechanism of leukocyte transmigration. Furthermore, we showed evidence for STAT1 involvement in this process. Our findings provide new evidence about the IL27-dependent proinflammatory signaling which may be under the control of calprotectin and highlight the need for further investigations on molecules which might have antiatherosclerotic functions

    Synapsin is required to "boost" memory strength for highly salient events

    No full text
    Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the Drosophila genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function at the behavioral level. Task-relevant sensorimotor functions, however, remain intact in the absence of Synapsin. Using an odor-sugar reward associative learning paradigm in larval Drosophila, we show that memory scores in mutants lacking Synapsin (syn(97)) are lower than in wild-type animals only when more salient, higher concentrations of odor or of the sugar reward are used. Furthermore, we show that Synapsin is selectively required for larval short-term memory. Thus, without Synapsin Drosophila larvae can learn and remember, but Synapsin is required to form memories that match in strength to event salience-in particular to a high saliency of odors, of rewards, or the salient recency of an event. We further show that the residual memory scores upon a lack of Synapsin are not further decreased by an additional lack of the Sap47 protein. In combination with mass spectrometry data showing an up-regulated phosphorylation of Synapsin in the larval nervous system upon a lack of Sap47, this is suggestive of a functional interdependence of Synapsin and Sap47

    Thiamine-dependent regulation of mammalian brain pyridoxal kinase in vitro and in vivo

    No full text
    Vitamins B1 (thiamine) and B6 (pyridox(al/ine/amine)) are crucial for CNS function and neurogenesis due to the coenzyme action of their phosphorylated derivatives in the brain metabolism of glucose and neurotransmitters. Here, the non-coenzyme action of thiamine on the major mammalian producers of pyridoxal-5'-phosphate (PLP), such as pyridoxal kinase (PdxK) and pyridoxine 5'-phosphate oxidase (PNPO), is characterized. Among the natural thiamine compounds, thiamine triphosphate (ThTP) is the best effector of recombinant human PdxK (hPdxK) in vitro, inhibiting hPdxK in the presence of Mg2+ , but activating the Zn2+ -dependent reaction. Inhibition of hPdxK by thiamine antagonists decreases from amprolium to pyrithiamine to oxythiamine, highlighting possible dysregulation of both the B1 - and B6 -dependent metabolism in the chemical models of thiamine deficiency. Compared to the canonical hPdxK, the D87H and V128I variants show a 2-fold increase in Kapp of thiamine inhibition, and the V128I and H246Q variants show a 4-fold and a 2-fold decreased Kapp of ThDP, respectively. Thiamine administration changes diurnal regulation of PdxK activity and phosphorylation at Ser213 and Ser285, expression of the PdxK-related circadian kinases / phosphatases in the rat brain, and ECG. In contrast to PdxK, PNPO is not affected by thiamine or its derivatives, either in vitro, or in vivo. Dephosphorylation of the PdxK Ser285, potentially affecting mobility of the ATP-binding loop, inversely correlates with the enzyme activity. Dephosphorylation of the PdxK Ser213, which is far away from the active site, does not correlate with the activity. The correlations analysis suggests the PdxK Ser213 to be a target of kinase MAP2K1 and phosphatase Ppp1ca. Diurnal effects of thiamine administration on the metabolically linked ThDP- and PLP-dependent enzymes may support the brain homeostatic mechanisms and physiological fitness
    corecore