404 research outputs found

    Oxygen enhanced atomic chain formation

    Get PDF
    We report experimental evidence for atomic chain formation during stretching of atomic-sized contacts for gold and silver, that is strongly enhanced due to oxygen incorporation. While gold has been known for its tendency to form atomic chains, for silver this is only observed in the presence of oxygen. With oxygen the silver chains are as long as those for gold, but the conductance drops with chain length to about 0.1 conductance quantum. A relation is suggested with previous work on surface reconstructions for silver (110) surfaces after chemisorption of oxygen.Comment: 4 pages, 4 figure

    Vibrationally Induced Two-Level Systems in Single-Molecule Junctions

    Get PDF
    Single-molecule junctions are found to show anomalous spikes in dI/dV spectra. The position in energy of the spikes are related to local vibration mode energies. A model of vibrationally induced two-level systems reproduces the data very well. This mechanism is expected to be quite general for single-molecule junctions. It acts as an intrinsic amplification mechanism for local vibration mode features and may be exploited as a new spectroscopic tool.Comment: 4 pages, 4 figure

    Formation and properties of metal-oxygen atomic chains

    Get PDF
    Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations that give insight in the physical mechanism of the oxygen-induced strengthening of the linear bonds and the conductance of the metal-oxygen chains.Comment: 10 pages, 9 fig

    Dynamics of hard-sphere suspension using Dynamic Light Scattering and X-Ray Photon Correlation Spectroscopy: dynamics and scaling of the Intermediate Scattering Function

    Get PDF
    Intermediate Scattering Functions (ISF's) are measured for colloidal hard sphere systems using both Dynamic Light Scattering (DLS) and X-ray Photon Correlation Spectroscopy (XPCS). We compare the techniques, and discuss the advantages and disadvantages of each. Both techniques agree in the overlapping range of scattering vectors. We investigate the scaling behaviour found by Segre and Pusey [1] but challenged by Lurio et al. [2]. We observe a scaling behaviour over several decades in time but not in the long time regime. Moreover, we do not observe long time diffusive regimes at scattering vectors away from the peak of the structure factor and so question the existence of a long time diffusion coefficients at these scattering vectors.Comment: 21 pages, 11 figure

    Electrical control of spin dynamics in finite one-dimensional systems

    Full text link
    We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating spin-impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in the spirit of the s-d-model, where the itinerant electrons are described by a tight-binding model while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin oscillations. We systematically study the effect of an electrostatic gate bias V_g on the interconnecting channel and we map out the long-range dynamical spin transfer as a function of V_g. We identify regions of V_g giving rise to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure of the channel.Comment: 9 pages, 11 figure

    Stationary quantum Markov process for the Wigner function

    Full text link
    As a stochastic model for quantum mechanics we present a stationary quantum Markov process for the time evolution of the Wigner function on a lattice phase space Z_N x Z_N with N odd. By introducing a phase factor extension to the phase space, each particle can be treated independently. This is an improvement on earlier methods that require the whole distribution function to determine the evolution of a constituent particle. The process has branching and vanishing points, though a finite time interval can be maintained between the branchings. The procedure to perform a simulation using the process is presented.Comment: 12 pages, no figures; replaced with version accepted for publication in J. Phys. A, title changed, an example adde

    Roughening Induced Deconstruction in (100) Facets of CsCl Type Crystals

    Full text link
    The staggered 6-vertex model describes the competition between surface roughening and reconstruction in (100) facets of CsCl type crystals. Its phase diagram does not have the expected generic structure, due to the presence of a fully-packed loop-gas line. We prove that the reconstruction and roughening transitions cannot cross nor merge with this loop-gas line if these degrees of freedom interact weakly. However, our numerical finite size scaling analysis shows that the two critical lines merge along the loop-gas line, with strong coupling scaling properties. The central charge is much larger than 1.5 and roughening takes place at a surface roughness much larger than the conventional universal value. It seems that additional fluctuations become critical simultaneously.Comment: 31 pages, 9 figure

    Time-dependent embedding: surface electron emission

    Full text link
    An embedding method for solving the time-dependent Schr\"odinger equation is developed using the Dirac-Frenkel variational principle. Embedding allows the time-evolution of the wavefunction to be calculated explicitly in a limited region of space, the region of physical interest, the embedding potential ensuring that the wavefunction satisfies the correct boundary conditions for matching on to the rest of the system. This is applied to a study of the excitation of electrons at a metal surface, represented by a one-dimensional model potential for Cu(111). Time-dependent embedding potentials are derived for replacing the bulk substrate, and the image potential and vacuum region outside the surface, so that the calculation of electron excitation by a surface perturbation can be restricted to the surface itself. The excitation of the Shockley surface state and a continuum bulk state is studied, and the time-structure of the resulting currents analysed. Non-linear effects and the time taken for the current to arrive outside the surface are discussed. The method shows a clear distinction between emission from the localized surface state, where the charge is steadily depleted, and the extended continuum state where the current emitted into the vacuum is compensated by current approaching the surface from the bulk.Comment: 15 figure

    Weak Randomness for large q-State Potts models in Two Dimensions

    Full text link
    We have studied the effect of weak randomness on q-state Potts models for q > 4 by measuring the central charges of these models using transfer matrix methods. We obtain a set of new values for the central charges and then show that some of these values are related to one another by a factorization law.Comment: 8 pages, Latex, no figure

    The molecular signature of highly conductive metal-molecule-metal junctions

    Get PDF
    The simplicity of single-molecule junctions based on direct bonding of a small molecule between two metallic electrodes make them an ideal system for the study of fundamental questions related to molecular electronics. Here we study the conductance properties of six different molecules suspended between Pt electrodes. All the molecular junctions show a typical conductance of about 1G0 which is ascribed to the dominant role of the Pt contacts. However, despite the metallic-like conductivity, the individual molecular signature is well-expressed by the effect of molecular vibrations in the inelastic contribution to the conductance.Comment: 7 pages, 7 figures, 1 table. Related paper: J. Ferrer and V. M. Garc\'ia-Su\'arez, Phys. Rev. B 80, 085426 (2009
    corecore